Skip to content

Jasonyou1995/web-scraping-tutorial

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

10 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Web Scraping Tutorial πŸ•·οΈ

A comprehensive, hands-on tutorial for learning web scraping with Python. This tutorial covers everything from basic HTML parsing to advanced scraping frameworks, with practical exercises and real-world examples.

πŸ“š Table of Contents

🎯 Overview

This tutorial is designed for students and developers who want to learn web scraping from the ground up. You'll progress through increasingly sophisticated techniques and tools:

  1. Basics: HTTP requests, HTML parsing with BeautifulSoup4
  2. Intermediate: CSS selectors, data extraction patterns
  3. Advanced: Dynamic content with Selenium, handling JavaScript
  4. Framework: Building scalable scrapers with Scrapy
  5. Professional: Ethics, robots.txt, rate limiting, and deployment

πŸ“‹ Prerequisites

  • Basic Python knowledge (variables, functions, loops, conditionals)
  • Understanding of HTML/CSS basics
  • Familiarity with command line/terminal
  • Python 3.8 or higher installed

πŸš€ Installation

  1. Clone this repository:
git clone https://github.com/Jasonyou1995/web-scraping-tutorial.git
cd web-scraping-tutorial
  1. Create a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt

πŸ“– Tutorial Modules

Module 1: Introduction to Web Scraping

Duration: 1-2 hours | Difficulty: Beginner

Learn the fundamentals of web scraping:

  • Understanding HTTP requests and responses
  • Making requests with the requests library
  • Introduction to HTML structure
  • Basic parsing with BeautifulSoup4
  • Extracting text, links, and images

πŸ“‚ Location: modules/01_introduction/

Module 2: Advanced BeautifulSoup4

Duration: 2-3 hours | Difficulty: Beginner-Intermediate

Master HTML parsing techniques:

  • CSS selectors and navigation
  • Finding elements by attributes
  • Working with tables and lists
  • Data cleaning and transformation
  • Handling encoding issues

πŸ“‚ Location: modules/02_beautifulsoup/

Module 3: Selenium for Dynamic Content

Duration: 3-4 hours | Difficulty: Intermediate

Scrape JavaScript-heavy websites:

  • Setting up Selenium WebDriver
  • Browser automation basics
  • Waiting for dynamic content
  • Handling forms and authentication
  • Capturing screenshots and debugging

πŸ“‚ Location: modules/03_selenium/

Module 4: Scrapy Framework

Duration: 4-5 hours | Difficulty: Intermediate-Advanced

Build production-ready scrapers:

  • Scrapy architecture and components
  • Creating spiders and items
  • Pipelines for data processing
  • Middleware and settings
  • Crawling multiple pages
  • Exporting data to various formats

πŸ“‚ Location: modules/04_scrapy/

Module 5: Best Practices & Ethics

Duration: 1-2 hours | Difficulty: All levels

Professional web scraping:

  • Legal and ethical considerations
  • Respecting robots.txt
  • Rate limiting and politeness
  • Error handling and retries
  • Logging and monitoring
  • Deployment strategies

πŸ“‚ Location: modules/05_best_practices/

πŸ“ Project Structure

web-scraping-tutorial/
β”‚
β”œβ”€β”€ README.md                 # This file
β”œβ”€β”€ requirements.txt          # Python dependencies
β”œβ”€β”€ .gitignore               # Git ignore rules
β”‚
β”œβ”€β”€ modules/                 # Tutorial modules
β”‚   β”œβ”€β”€ 01_introduction/
β”‚   β”‚   β”œβ”€β”€ README.md       # Module overview
β”‚   β”‚   β”œβ”€β”€ tutorial.md     # Step-by-step guide
β”‚   β”‚   β”œβ”€β”€ examples/       # Code examples
β”‚   β”‚   β”œβ”€β”€ exercises/      # Practice exercises
β”‚   β”‚   └── solutions/      # Exercise solutions
β”‚   β”‚
β”‚   β”œβ”€β”€ 02_beautifulsoup/
β”‚   β”‚   β”œβ”€β”€ README.md
β”‚   β”‚   β”œβ”€β”€ tutorial.md
β”‚   β”‚   β”œβ”€β”€ examples/
β”‚   β”‚   β”œβ”€β”€ exercises/
β”‚   β”‚   └── solutions/
β”‚   β”‚
β”‚   β”œβ”€β”€ 03_selenium/
β”‚   β”‚   β”œβ”€β”€ README.md
β”‚   β”‚   β”œβ”€β”€ tutorial.md
β”‚   β”‚   β”œβ”€β”€ examples/
β”‚   β”‚   β”œβ”€β”€ exercises/
β”‚   β”‚   └── solutions/
β”‚   β”‚
β”‚   β”œβ”€β”€ 04_scrapy/
β”‚   β”‚   β”œβ”€β”€ README.md
β”‚   β”‚   β”œβ”€β”€ tutorial.md
β”‚   β”‚   β”œβ”€β”€ project_template/
β”‚   β”‚   β”œβ”€β”€ exercises/
β”‚   β”‚   └── solutions/
β”‚   β”‚
β”‚   └── 05_best_practices/
β”‚       β”œβ”€β”€ README.md
β”‚       β”œβ”€β”€ tutorial.md
β”‚       β”œβ”€β”€ examples/
β”‚       └── checklists/
β”‚
β”œβ”€β”€ data/                    # Sample data and test pages
β”‚   β”œβ”€β”€ sample_pages/       # Local HTML files for practice
β”‚   β”œβ”€β”€ datasets/           # Example datasets
β”‚   └── outputs/            # Scraped data outputs
β”‚
β”œβ”€β”€ utils/                   # Utility functions and helpers
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ helpers.py          # Common helper functions
β”‚   β”œβ”€β”€ validators.py       # URL and data validators
β”‚   └── config.py           # Configuration settings
β”‚
└── resources/              # Additional learning resources
    β”œβ”€β”€ cheatsheets/       # Quick reference guides
    β”œβ”€β”€ troubleshooting.md # Common issues and solutions
    └── references.md      # External resources and links

🏁 Getting Started

  1. Start with Module 1: Begin with the introduction module to understand the basics
  2. Follow the tutorials: Each module has a tutorial.md with step-by-step instructions
  3. Run the examples: Execute the example scripts to see concepts in action
  4. Complete exercises: Practice with hands-on exercises in each module
  5. Check solutions: Compare your work with provided solutions
  6. Build projects: Apply your knowledge to real-world scraping projects

Quick Start Example

# Your first web scraper!
import requests
from bs4 import BeautifulSoup

url = "https://example.com"
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')

# Extract all links
links = soup.find_all('a')
for link in links:
    print(link.get('href'))

βœ… Best Practices

  • Always respect robots.txt: Check if scraping is allowed
  • Rate limit your requests: Don't overwhelm servers
  • Handle errors gracefully: Implement proper error handling
  • Cache responses: Avoid redundant requests during development
  • Use appropriate headers: Identify your scraper
  • Be ethical: Respect website terms of service and privacy

🀝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request. For major changes:

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

πŸ“„ License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

πŸ™ Acknowledgments

  • Python community for amazing libraries
  • Contributors and students who helped improve this tutorial
  • Open source projects that make web scraping accessible

πŸ“ž Support

If you have questions or run into issues:


Happy Scraping! πŸŽ‰

Remember: With great scraping power comes great responsibility. Always scrape ethically and legally.

About

A fun tutorial for you to learn web scraping

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •