Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 15 additions & 3 deletions examples/tracking/visual/PyCV_TrackFeaturesFwdBck.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,12 @@ using SHA: sha256
np = pyimport("numpy")
cv = pyimport("cv2")

pushfirst!(PyVector(pyimport("sys")."path"), @__DIR__ )

SscPy = pyimport("PySSCFeatures")
ssc = SscPy."ssc"


# # lk_params = ( winSize = (19, 19), maxLevel = 2, criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03))
# lk_params = ( winSize = (19, 19), maxLevel = 2, criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 30, 0.01))
# feature_params = (maxCorners = 1000, qualityLevel = 0.01, minDistance = 8, blockSize = 19 )
Expand Down Expand Up @@ -43,16 +49,22 @@ function goodFeaturesToTrack(im1, feature_params; mask=nothing)
cv.goodFeaturesToTrack(collect(reinterpret(UInt8, im1)), mask=collect(reinterpret(UInt8,mask)), feature_params...)
end

function goodFeaturesToTrackORB(im1; mask=nothing, orb = cv.ORB_create())
function goodFeaturesToTrackORB(im1; mask=nothing, orb = cv.ORB_create(), downsample::Int=5, tolerance::Real = 0.1)
# gray = cv2.cvtColor(im1,cv.COLOR_BGR2GRAY)
# kypts, decrs = orb.detectAndCompute(gray,None)
# https://docs.opencv.org/3.4/d1/d89/tutorial_py_orb.html
# find the keypoints with ORB
img = collect(reinterpret(UInt8, im1))
kp = orb.detect(img, collect(reinterpret(UInt8,mask)))

# downselect a better distribution of features
rows, cols = size(img,1), size(img,2)
sel_kp = ssc(kp, orb.getMaxFeatures() ÷ downsample, tolerance, cols, rows)

# compute the descriptors with ORB
kp, des = orb.compute(img, kp)
return kp, des
kp_, des = orb.compute(img, sel_kp)

return kp_, des
end

function combinePlot(ref_img, overlay_img)
Expand Down
131 changes: 131 additions & 0 deletions examples/tracking/visual/PySSCFeatures.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
# Taken from: https://github.com/BAILOOL/ANMS-Codes/blob/568fa6a1b39aa46fa04ad600cb40a33decf52897/Python/ssc.py#L1

# @article{bailo2018efficient,
# title={Efficient adaptive non-maximal suppression algorithms for homogeneous spatial keypoint distribution},
# author={Bailo, Oleksandr and Rameau, Francois and Joo, Kyungdon and Park, Jinsun and Bogdan, Oleksandr and Kweon, In So},
# journal={Pattern Recognition Letters},
# volume={106},
# pages={53--60},
# year={2018},
# publisher={Elsevier}
# }

# MIT "Expat" License

# Copyright (c) 2018 Oleksandr Bailo

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.


import math

def ssc(keypoints, num_ret_points, tolerance, cols, rows):
exp1 = rows + cols + 2 * num_ret_points
exp2 = (
4 * cols
+ 4 * num_ret_points
+ 4 * rows * num_ret_points
+ rows * rows
+ cols * cols
- 2 * rows * cols
+ 4 * rows * cols * num_ret_points
)
exp3 = math.sqrt(exp2)
exp4 = num_ret_points - 1

sol1 = -round(float(exp1 + exp3) / exp4) # first solution
sol2 = -round(float(exp1 - exp3) / exp4) # second solution

high = (
sol1 if (sol1 > sol2) else sol2
) # binary search range initialization with positive solution
low = math.floor(math.sqrt(len(keypoints) / num_ret_points))

prev_width = -1
selected_keypoints = []
result_list = []
result = []
complete = False
k = num_ret_points
k_min = round(k - (k * tolerance))
k_max = round(k + (k * tolerance))

while not complete:
width = low + (high - low) / 2
if (
width == prev_width or low > high
): # needed to reassure the same radius is not repeated again
result_list = result # return the keypoints from the previous iteration
break

c = width / 2 # initializing Grid
num_cell_cols = int(math.floor(cols / c))
num_cell_rows = int(math.floor(rows / c))
covered_vec = [
[False for _ in range(num_cell_cols + 1)] for _ in range(num_cell_rows + 1)
]
result = []

for i in range(len(keypoints)):
row = int(
math.floor(keypoints[i].pt[1] / c)
) # get position of the cell current point is located at
col = int(math.floor(keypoints[i].pt[0] / c))
if not covered_vec[row][col]: # if the cell is not covered
result.append(i)
# get range which current radius is covering
row_min = int(
(row - math.floor(width / c))
if ((row - math.floor(width / c)) >= 0)
else 0
)
row_max = int(
(row + math.floor(width / c))
if ((row + math.floor(width / c)) <= num_cell_rows)
else num_cell_rows
)
col_min = int(
(col - math.floor(width / c))
if ((col - math.floor(width / c)) >= 0)
else 0
)
col_max = int(
(col + math.floor(width / c))
if ((col + math.floor(width / c)) <= num_cell_cols)
else num_cell_cols
)
for row_to_cover in range(row_min, row_max + 1):
for col_to_cover in range(col_min, col_max + 1):
if not covered_vec[row_to_cover][col_to_cover]:
# cover cells within the square bounding box with width w
covered_vec[row_to_cover][col_to_cover] = True

if k_min <= len(result) <= k_max: # solution found
result_list = result
complete = True
elif len(result) < k_min:
high = width - 1 # update binary search range
else:
low = width + 1
prev_width = width

for i in range(len(result_list)):
selected_keypoints.append(keypoints[result_list[i]])

return selected_keypoints