A computational pipeline for designing phosphorylation switches using structural bioinformatics tools.
STRIDE is used for secondary structure identification.
# Download from: https://webclu.bio.wzw.tum.de/stride/
# Then modify the stride path in preprocess.pygit clone https://github.com/dauparas/ProteinMPNN.git
# Modify the main_path in design.py: 'main_path': '/path/to/your/ProteinMPNN'git clone https://github.com/sokrypton/ColabFold.gitCreate and configure the environment (same as ProteinMPNN requirements):
conda create --name mlfold # creates conda environment called mlfold
conda activate mlfold # activate environment
# Install PyTorch (adjust CUDA version based on your system)
conda install pytorch torchvision torchaudio cudatoolkit=12.4 -c pytorchpython ./preprocess.py \
--input ./input_pdbs \
--output ./example_output \
--stride_path /path/to/your/stridepython ./design.py ./example_output/rename.csvpython ./filt_analysis.py- Preprocessing: Identifies secondary structures using STRIDE
- Design: Uses ProteinMPNN for protein design
- Prediction: Utilizes ColabFold for structure prediction
- Analysis: Filters and analyzes the results
├── preprocess.py # Preprocessing script
├── design.py # Design and prediction script
├── filt_analysis.py # Filtering and analysis script
├── input_pdbs/ # Input PDB files directory
└── example_output/ # Output directory
Remember to update the following paths in the respective scripts:
stride_pathinpreprocess.pymain_path(ProteinMPNN location) indesign.py