Semantic segmentation on remote sensing data sets with the mmsegmentation of OpenMMLab 2.0.
Explore benchmark for comparison.
Personal maintenance and use.
- Potsdam
- FCN
- DeepLab
- UNet
- UperNet
# create env
conda create -n mmseg_rs python=3.8
conda activate mmseg_rs
# install pytorch
conda install -c pytorch pytorch torchvision
# or
pip3 install torch torchvision
# install mmseg of OpenMMLab 2.0
pip install openmim
mim install mmengine 'mmcv>=2.0.0rc0' 'mmsegmentation>=1.0.0rc0'Using mim to deal with experiments.
# training
mim train mmseg {config} # train on single gpu
mim train mmseg {config} --cfg-options train_dataloader.batch_size=1 # modify cfg options
mim train mmseg {config} --gpus {num_gpus} --launcher pytorch # train on distributed mode
# testing
mim test mmseg {config} --checkpoint {checkpont} # test on single gpu
mim test mmseg {config} --checkpoint {checkpont} --gpus {num_gpus} --launcher pytorch # test on distributed mode| Segmentor | OA | mFscore | mIoU |
|---|---|---|---|