Skip to content

Semantic segmentation on remote sensing data sets with the mmsegmentation of OpenMMLab 2.0. Personal maintenance and use.

Notifications You must be signed in to change notification settings

Li-Qingyun/remote_sensing_semantic_segmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 

Repository files navigation

Remote Sensing Semantic Segmentation

Semantic segmentation on remote sensing data sets with the mmsegmentation of OpenMMLab 2.0.

Explore benchmark for comparison.

Personal maintenance and use.

Support Dataset

  • Potsdam

Support Model

  • FCN
  • DeepLab
  • UNet
  • UperNet

Prepare Env

# create env
conda create -n mmseg_rs python=3.8
conda activate mmseg_rs

# install pytorch
conda install -c pytorch pytorch torchvision
# or
pip3 install torch torchvision

# install mmseg of OpenMMLab 2.0
pip install openmim
mim install mmengine 'mmcv>=2.0.0rc0' 'mmsegmentation>=1.0.0rc0'

Launch Experiments

Using mim to deal with experiments.

# training
mim train mmseg {config}  # train on single gpu
mim train mmseg {config} --cfg-options train_dataloader.batch_size=1  # modify cfg options
mim train mmseg {config} --gpus {num_gpus} --launcher pytorch  # train on distributed mode

# testing
mim test mmseg {config} --checkpoint {checkpont}  # test on single gpu
mim test mmseg {config} --checkpoint {checkpont} --gpus {num_gpus} --launcher pytorch  # test on distributed mode

Results

Segmentor OA mFscore mIoU

About

Semantic segmentation on remote sensing data sets with the mmsegmentation of OpenMMLab 2.0. Personal maintenance and use.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages