Skip to content

Trainer fit stopped: max_epochs=1 reached.Β #14428

@henrykironde

Description

@henrykironde

πŸ› Bug

`Trainer.fit` stopped: `max_epochs=1` reached.

Fails to run trainer fit

(py3.10) ➜  Deepgit:(main) βœ— python torch_nn.py    
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name    | Type       | Params
---------------------------------------
0 | encoder | Sequential | 50.4 K
1 | decoder | Sequential | 51.2 K
---------------------------------------
101 K     Trainable params
0         Non-trainable params
101 K     Total params
0.407     Total estimated model params size (MB)
/opt/miniconda3/envs/py3.10/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:225: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 16 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.
  rank_zero_warn(
Epoch 0: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 100/100 [00:00<00:00, 324.18it/s, loss=0.0663, v_num=13]

`Trainer.fit` stopped: `max_epochs=1` reached.

Epoch 0: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 100/100 [00:00<00:00, 318.34it/s, loss=0.0663, v_num=13]
(py3.10) ➜  Deepgit:(main) βœ— 

To Reproduce

import os
from torch import optim, nn, utils, Tensor
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
import pytorch_lightning as pl

# define any number of nn.Modules (or use your current ones)
encoder = nn.Sequential(nn.Linear(28 * 28, 64), nn.ReLU(), nn.Linear(64, 3))
decoder = nn.Sequential(nn.Linear(3, 64), nn.ReLU(), nn.Linear(64, 28 * 28))

# define the LightningModule
class LitAutoEncoder(pl.LightningModule):
    def __init__(self, encoder, decoder):
        super().__init__()
        self.encoder = encoder
        self.decoder = decoder

    def training_step(self, batch, batch_idx):
        # training_step defines the train loop.
        # it is independent of forward
        x, y = batch
        x = x.view(x.size(0), -1)
        z = self.encoder(x)
        x_hat = self.decoder(z)
        loss = nn.functional.mse_loss(x_hat, x)
        # Logging to TensorBoard by default
        self.log("train_loss", loss)
        return loss

    def configure_optimizers(self):
        optimizer = optim.Adam(self.parameters(), lr=1e-3)
        return optimizer


# init the autoencoder
autoencoder = LitAutoEncoder(encoder, decoder)


# setup data
dataset = MNIST(os.getcwd(), download=True, transform=ToTensor())
train_loader = utils.data.DataLoader(dataset)


# train the model (hint: here are some helpful Trainer arguments for rapid idea iteration)
trainer = pl.Trainer(limit_train_batches=100, max_epochs=1)
trainer.fit(model=autoencoder, train_dataloaders=train_loader)

Expected behavior

Environment

  • Lightning Component (e.g. Trainer, LightningModule, LightningApp, LightningWork, LightningFlow):
  • pytorch_lightning==1.7.3
  • torch==1.12.1
  • torchaudio==0.12.1
  • torchvision==0.13.1
  • PyTorch Lightning Version (e.g., 1.5.0):
  • Lightning App Version (e.g., 0.5.2):
  • PyTorch Version (e.g., 1.10):
  • Python version (e.g., 3.9): 3.10
  • OS (e.g., Linux): macOS Monterey
  • CUDA/cuDNN version:
  • GPU models and configuration:
  • How you installed PyTorch (conda, pip, source): pip
  • If compiling from source, the output of torch.__config__.show():
  • Running environment of LightningApp (e.g. local, cloud):
  • Any other relevant information:

Additional context

Metadata

Metadata

Assignees

No one assigned

    Labels

    plGeneric label for PyTorch Lightning packagequestionFurther information is requestedwaiting on authorWaiting on user action, correction, or update

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions