A Claude skill for discovering MHub medical imaging AI models, looking up anatomical segment codes, and generating workflow configurations for running models on NIfTI files.
- Model Discovery: Find models by modality (CT, MR, PET), anatomy (liver, lung, heart), or capability
- Segment Lookup: Get SNOMED CT codes, display colors, and metadata for 155 anatomical structures
- Workflow Generation: Create custom YAML configs to run MHub models on NIfTI/NRRD files
- DCMQI Config Generation: Generate metadata JSON for DICOM-SEG conversion
- Offline-First: Works without network access using bundled cached data
-
Download or clone this skill folder
-
Create a ZIP file of the skill:
cd mhub-segmentation zip -r ../mhub-segmentation.zip .
-
In Claude.ai:
- Go to Settings → Features → Skills
- Click Add Skill
- Upload the
mhub-segmentation.zipfile - Enable the skill
-
The skill will automatically activate when you ask about:
- MHub models or medical image segmentation
- Running AI models on NIfTI files
- SNOMED codes for anatomical structures
- DICOM-SEG conversion
-
Clone or copy the skill to your Claude Code skills directory:
# Option 1: User skills (available in all projects) cp -r mhub-segmentation ~/.claude/skills/ # Option 2: Project skills (available in current project) cp -r mhub-segmentation .claude/skills/
-
The skill is now available. Claude Code will automatically use it when relevant, or you can invoke it directly:
/mhub-segmentation -
To refresh the model cache (requires network):
python ~/.claude/skills/mhub-segmentation/scripts/mhub_helper.py refresh
Ask Claude:
- "What MHub models can segment the liver?"
- "Show me CT segmentation models"
- "What models work with MRI data?"
Or use the helper script directly:
python scripts/mhub_helper.py find liver kidney
python scripts/mhub_helper.py models --modality CT
python scripts/mhub_helper.py model totalsegmentatorAsk Claude:
- "How do I run TotalSegmentator on my NIfTI files?"
- "Generate a workflow config for lungmask with BIDS data"
- "Help me process my CT scans with MHub"
Or generate configs directly:
python scripts/mhub_helper.py config totalsegmentator --pattern flat --output custom.yml
docker run --rm --gpus all \
-v /path/to/nifti:/app/data/input_data:ro \
-v /path/to/output:/app/data/output_data \
-v ./custom.yml:/app/config/custom.yml:ro \
mhubai/totalsegmentator:latest \
--config /app/config/custom.ymlAsk Claude:
- "What's the SNOMED code for left kidney?"
- "Show me segment info for LIVER"
- "What segments does TotalSegmentator output?"
Or use the script:
python scripts/mhub_helper.py segment LEFT_KIDNEY
python scripts/mhub_helper.py segments --search heartmhub-segmentation/
├── SKILL.md # Main skill instructions
├── README.md # This file
├── data/
│ ├── models_cache.json # Raw MHub API response
│ ├── models_summary.json # Processed model index
│ └── segdb_cache.json # SegDB segments with SNOMED codes
├── references/
│ ├── nifti-workflows.md # Complete NIfTI workflow guide
│ ├── filestructure-patterns.md # FileStructureImporter syntax
│ └── dataorganizer-patterns.md # Output organization options
├── scripts/
│ └── mhub_helper.py # CLI tool for queries and config generation
└── assets/
└── workflow-templates/
├── nifti_generic.yml # Generic NIfTI template
├── bids_template.yml # BIDS-compatible template
├── clinical_trial_template.yml # Multi-site template
└── defaults/ # Original configs for 30 models
The skill includes cached data for offline operation:
| Data | Count | Source | Cache Date |
|---|---|---|---|
| MHub Models | 30 | mhub.ai API | 2025-01-29 |
| SegDB Segments | 155 | segdb Python package | 2025-01-29 |
| Default Configs | 30 | MHub GitHub repository | 2025-01-29 |
To update the cache (requires network access):
python scripts/mhub_helper.py refreshThe skill includes data for all 30 MHub models:
CT Segmentation: totalsegmentator (104 structures), platipy (cardiac), lungmask, casust, nnunet_liver, nnunet_pancreas, bamf_nnunet_ct_kidney, gc_lunglobes, nnunet_segthor, gc_autopet_fpr, gc_nnunet_pancreas, msk_smit_lung_gtv
MR Segmentation: mrsegmentator, bamf_nnunet_mr_prostate, bamf_nnunet_mr_liver, nnunet_prostate_zonal_task05, nnunet_prostate_task24, monai_prostate158, gc_spider_baseline
PET/CT: bamf_pet_ct_lung_tumor, bamf_pet_ct_breast_tumor
Prediction: gc_picai_baseline, gc_grt123_lung_cancer, gc_stoic_baseline, fmcib_radiomics, pyradiomics, gc_node21_baseline, gc_wsi_bgseg, gc_tiger_lb2
- Offline use: Python 3.8+ (no additional packages needed)
- Cache refresh:
requestspackage - SegDB Python API:
segdbpackage - Running models: Docker with NVIDIA GPU support
This skill is provided under the MIT License.
MHub models have individual licenses (typically Apache 2.0 for code, CC BY-NC 4.0 for weights). Check each model's license before use.