Skip to content

This skill enables agentic systems to explore, run, adapt and generate MHub.ai models.

Notifications You must be signed in to change notification settings

MHubAI/MHubSkill

Repository files navigation

MHub Segmentation Skill

A Claude skill for discovering MHub medical imaging AI models, looking up anatomical segment codes, and generating workflow configurations for running models on NIfTI files.

Features

  • Model Discovery: Find models by modality (CT, MR, PET), anatomy (liver, lung, heart), or capability
  • Segment Lookup: Get SNOMED CT codes, display colors, and metadata for 155 anatomical structures
  • Workflow Generation: Create custom YAML configs to run MHub models on NIfTI/NRRD files
  • DCMQI Config Generation: Generate metadata JSON for DICOM-SEG conversion
  • Offline-First: Works without network access using bundled cached data

Installation

For Claude.ai

  1. Download or clone this skill folder

  2. Create a ZIP file of the skill:

    cd mhub-segmentation
    zip -r ../mhub-segmentation.zip .
  3. In Claude.ai:

    • Go to SettingsFeaturesSkills
    • Click Add Skill
    • Upload the mhub-segmentation.zip file
    • Enable the skill
  4. The skill will automatically activate when you ask about:

    • MHub models or medical image segmentation
    • Running AI models on NIfTI files
    • SNOMED codes for anatomical structures
    • DICOM-SEG conversion

For Claude Code

  1. Clone or copy the skill to your Claude Code skills directory:

    # Option 1: User skills (available in all projects)
    cp -r mhub-segmentation ~/.claude/skills/
    
    # Option 2: Project skills (available in current project)
    cp -r mhub-segmentation .claude/skills/
  2. The skill is now available. Claude Code will automatically use it when relevant, or you can invoke it directly:

    /mhub-segmentation
    
  3. To refresh the model cache (requires network):

    python ~/.claude/skills/mhub-segmentation/scripts/mhub_helper.py refresh

Usage Examples

Find Models

Ask Claude:

  • "What MHub models can segment the liver?"
  • "Show me CT segmentation models"
  • "What models work with MRI data?"

Or use the helper script directly:

python scripts/mhub_helper.py find liver kidney
python scripts/mhub_helper.py models --modality CT
python scripts/mhub_helper.py model totalsegmentator

Run Models on NIfTI Files

Ask Claude:

  • "How do I run TotalSegmentator on my NIfTI files?"
  • "Generate a workflow config for lungmask with BIDS data"
  • "Help me process my CT scans with MHub"

Or generate configs directly:

python scripts/mhub_helper.py config totalsegmentator --pattern flat --output custom.yml

docker run --rm --gpus all \
  -v /path/to/nifti:/app/data/input_data:ro \
  -v /path/to/output:/app/data/output_data \
  -v ./custom.yml:/app/config/custom.yml:ro \
  mhubai/totalsegmentator:latest \
  --config /app/config/custom.yml

Look Up Segment Codes

Ask Claude:

  • "What's the SNOMED code for left kidney?"
  • "Show me segment info for LIVER"
  • "What segments does TotalSegmentator output?"

Or use the script:

python scripts/mhub_helper.py segment LEFT_KIDNEY
python scripts/mhub_helper.py segments --search heart

Skill Contents

mhub-segmentation/
├── SKILL.md                 # Main skill instructions
├── README.md                # This file
├── data/
│   ├── models_cache.json    # Raw MHub API response
│   ├── models_summary.json  # Processed model index
│   └── segdb_cache.json     # SegDB segments with SNOMED codes
├── references/
│   ├── nifti-workflows.md   # Complete NIfTI workflow guide
│   ├── filestructure-patterns.md  # FileStructureImporter syntax
│   └── dataorganizer-patterns.md  # Output organization options
├── scripts/
│   └── mhub_helper.py       # CLI tool for queries and config generation
└── assets/
    └── workflow-templates/
        ├── nifti_generic.yml        # Generic NIfTI template
        ├── bids_template.yml        # BIDS-compatible template
        ├── clinical_trial_template.yml  # Multi-site template
        └── defaults/                # Original configs for 30 models

Cached Data

The skill includes cached data for offline operation:

Data Count Source Cache Date
MHub Models 30 mhub.ai API 2025-01-29
SegDB Segments 155 segdb Python package 2025-01-29
Default Configs 30 MHub GitHub repository 2025-01-29

To update the cache (requires network access):

python scripts/mhub_helper.py refresh

Supported Models

The skill includes data for all 30 MHub models:

CT Segmentation: totalsegmentator (104 structures), platipy (cardiac), lungmask, casust, nnunet_liver, nnunet_pancreas, bamf_nnunet_ct_kidney, gc_lunglobes, nnunet_segthor, gc_autopet_fpr, gc_nnunet_pancreas, msk_smit_lung_gtv

MR Segmentation: mrsegmentator, bamf_nnunet_mr_prostate, bamf_nnunet_mr_liver, nnunet_prostate_zonal_task05, nnunet_prostate_task24, monai_prostate158, gc_spider_baseline

PET/CT: bamf_pet_ct_lung_tumor, bamf_pet_ct_breast_tumor

Prediction: gc_picai_baseline, gc_grt123_lung_cancer, gc_stoic_baseline, fmcib_radiomics, pyradiomics, gc_node21_baseline, gc_wsi_bgseg, gc_tiger_lb2

Requirements

  • Offline use: Python 3.8+ (no additional packages needed)
  • Cache refresh: requests package
  • SegDB Python API: segdb package
  • Running models: Docker with NVIDIA GPU support

License

This skill is provided under the MIT License.

MHub models have individual licenses (typically Apache 2.0 for code, CC BY-NC 4.0 for weights). Check each model's license before use.

Resources

About

This skill enables agentic systems to explore, run, adapt and generate MHub.ai models.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published