Repository for biologically inspired algorithms classes.
-
Build the main program
g++ -o bio_alg main.cpp random.cpp Problem.cpp solution.cpp utils.cpp -std=c++17 -
Create a batch script for running the runtime evaluations e.g.:
python .\create_batch.py data/qap/ results/runtime_results.txt p.txt batch_files/run_runtime.bat --mode runtime -
Run the runtime evaluation batch script e.g.:
.\batch_files/run_runtime.bat -
Copy the mean runtime of greedyLS algorithm for each instance into create_batch.py
-
Create a batch script for running the performance evaluations e.g.:
python .\create_batch.py data/qap/ r.txt results/performance_results.txt batch_files/run_performance.bat --mode performance -
Run the performance evaluation batch script e.g.:
.\batch_files/run_performance.bat -
Create batch script for running the MSLS number of restarts evaluations e.g.:
python .\create_batch.py data/qap/ r.txt results/MSLS_restarts_results.txt batch_files/run_msls_performance.bat --mode performance_restarts -
Run the MSLS number of restarts evaluations batch script e.g.:
.\batch_files/run_msls_performance.bat -
Visualize results with LS_Results.ipynb (remember to set appropriate paths to result files)