Skip to content

MatTheTab/Biologically_Inspired_Algorithms

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

67 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Biologically_Inspired_Algorithms

Repository for biologically inspired algorithms classes.

How to run the experiments:

  1. Build the main program
    g++ -o bio_alg main.cpp random.cpp Problem.cpp solution.cpp utils.cpp -std=c++17

  2. Create a batch script for running the runtime evaluations e.g.:
    python .\create_batch.py data/qap/ results/runtime_results.txt p.txt batch_files/run_runtime.bat --mode runtime

  3. Run the runtime evaluation batch script e.g.:
    .\batch_files/run_runtime.bat

  4. Copy the mean runtime of greedyLS algorithm for each instance into create_batch.py

  5. Create a batch script for running the performance evaluations e.g.:
    python .\create_batch.py data/qap/ r.txt results/performance_results.txt batch_files/run_performance.bat --mode performance

  6. Run the performance evaluation batch script e.g.:
    .\batch_files/run_performance.bat

  7. Create batch script for running the MSLS number of restarts evaluations e.g.:
    python .\create_batch.py data/qap/ r.txt results/MSLS_restarts_results.txt batch_files/run_msls_performance.bat --mode performance_restarts

  8. Run the MSLS number of restarts evaluations batch script e.g.:
    .\batch_files/run_msls_performance.bat

  9. Visualize results with LS_Results.ipynb (remember to set appropriate paths to result files)

About

Repository for biologically inspired algorithms classes.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •