Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion tests/models/model_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -261,7 +261,7 @@ def assertInference(self, model, tokenizer=None, keywords=None, prompt=INFERENCE
if k.lower() in generated:
self.assertTrue(True)
return
self.assertTrue(False, f"none of keywords were found in generated: `{generated}`")
raise AssertionError(f"none of keywords were found in generated: `{generated}`")

# note that sampling is disabled for help with deterministic generation for ci tests
def generate(self, model, tokenizer, prompt=None):
Expand Down
13 changes: 7 additions & 6 deletions tests/test_benchmark_gar.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
from tabulate import tabulate

from gptqmodel.quantization import gar
from gptqmodel.quantization import gar_ref


def _benchmark_fn(label, fn, device, warmup_runs=3, measured_runs=10):
Expand Down Expand Up @@ -54,9 +55,9 @@ def optimized_call():
return result

def original_call():
local = gar.compute_local_perms_original(diag_H, groupsize)
global_perm = gar.compute_global_perm_original(diag_H, groupsize)
return gar.compose_final_perm_original(local, global_perm, groupsize)
local = gar_ref.compute_local_perms_original(diag_H, groupsize)
global_perm = gar_ref.compute_global_perm_original(diag_H, groupsize)
return gar_ref.compose_final_perm_original(local, global_perm, groupsize)

# Ensure both implementations agree before timing to detect accuracy regressions.
optimized_result = optimized_call()
Expand Down Expand Up @@ -137,9 +138,9 @@ def test_gar_accuracy_randomized(seed):
)
opt_final = gar.compose_final_perm(opt_local, opt_global, groupsize)

orig_local = gar.compute_local_perms_original(diag_H, groupsize)
orig_global = gar.compute_global_perm_original(diag_H, groupsize)
orig_final = gar.compose_final_perm_original(orig_local, orig_global, groupsize)
orig_local = gar_ref.compute_local_perms_original(diag_H, groupsize)
orig_global = gar_ref.compute_global_perm_original(diag_H, groupsize)
orig_final = gar_ref.compose_final_perm_original(orig_local, orig_global, groupsize)

opt_perm_values = diag_H[opt_final]
orig_perm_values = diag_H[orig_final]
Expand Down
3 changes: 1 addition & 2 deletions tests/test_bits.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,8 +82,7 @@ def test_bits(self):
# quantize
model_id = "/monster/data/model/Qwen2.5-0.5B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
dataset = ["gptqmodel is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."]
calibration_dataset = [tokenizer(example) for example in dataset]
calibration_dataset = ["gptqmodel is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."]

for quant_backend in self.pack_backends:
supports_bits = self.QLINEAR_DICT[quant_backend].SUPPORTS_BITS
Expand Down
2 changes: 1 addition & 1 deletion tests/test_dynamic.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,4 +145,4 @@ def test_skip_module(self):
del model

q_model = GPTQModel.load(tmp_dir)
self.assertInference(model=q_model,tokenizer=self.tokenizer)
self.assertInference(model=q_model,tokenizer=self.tokenizer,keywords=["paris", "king"])