Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 34 additions & 0 deletions .github/workflows/cpp-linter.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
name: cpp-linter

on:
push:
branches: [ "*" ]
pull_request:
branches: [ "dev*", "main", "*release" ]


jobs:
cpp-linter:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
with:
persist-credentials: false
- uses: cpp-linter/cpp-linter-action@main
id: linter
continue-on-error: true
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
style: file
tidy-checks: '-*'
files-changed-only: true
lines-changed-only: diff
format-review: true
thread-comments: ${{ github.event_name == 'pull_request' && 'update' }}

- name: Fail fast?!
if: steps.linter.outputs.checks-failed != 0
run: |
echo "some linter checks failed. ${{ steps.linter.outputs.checks-failed }}"
exit 1
1 change: 1 addition & 0 deletions docs/source/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@ getting-started/installation_npu
user-guide/prefix-cache/index
user-guide/sparse-attention/index
user-guide/pd-disaggregation/index
user-guide/metrics/metrics
:::

:::{toctree}
Expand Down
193 changes: 193 additions & 0 deletions docs/source/user-guide/metrics/metrics.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,193 @@
# Observability

UCM (Unified Cache Management) provides detailed metrics monitoring through Prometheus endpoints, allowing in-depth monitoring of cache performance and behavior. This document describes how to enable and configure observability from the embedded vLLM `/metrics` API endpoint.

---

## Quick Start Guide

### 1) On UCM Side

First, set the `PROMETHEUS_MULTIPROC_DIR` environment variable.

```bash
export PROMETHEUS_MULTIPROC_DIR=/vllm-workspace
```

Then, start the UCM service.

```bash
export CUDA_VISIBLE_DEVICES=0
vllm serve /home/models/Qwen2.5-14B-Instruct \
--max-model-len 5000 \
--tensor-parallel-size 1 \
--gpu_memory_utilization 0.87 \
--trust-remote-code \
--disable-log-requests \
--no-enable-prefix-caching \
--enforce-eager \
--max-num-batched-tokens 40000 \
--max-num-seqs 10 \
--host 0.0.0.0 \
--port 8000 \
--kv-transfer-config \
'{
"kv_connector": "UCMConnector",
"kv_connector_module_path": "ucm.integration.vllm.ucm_connector",
"kv_role": "kv_both",
"kv_connector_extra_config": {
"UCM_CONFIG_FILE": "/vllm-workspace/unified-cache-management/examples/ucm_config.yaml"
}
}'
```
**Note**: You can refer to the `ucm_config.yaml` file at https://github.com/ModelEngine-Group/unified-cache-management/tree/develop/examples to configure the `metrics_config_path` parameter.

You can use the `vllm bench serve` command to run benchmarks:

```bash
vllm bench serve \
--backend vllm \
--model /home/models/Qwen2.5-14B-Instruct \
--host 127.0.0.1 \
--port 8000 \
--dataset-name random \
--num-prompts 20 \
--random-input-len 200 \
--random-output-len 10 \
--request-rate 1 \
--ignore-eos
```

Once the HTTP server is running, you can access the UCM metrics at the `/metrics` endpoint.

```bash
curl http://$<vllm-worker-ip>:8000/metrics | grep ucm:
```

You will also find some `.db` files in the `$PROMETHEUS_MULTIPROC_DIR` directory, which are temporary files used by Prometheus.

### 2) Start Prometheus and Grafana with Docker Compose

#### Create Docker Compose Configuration Files

First, create the `docker-compose.yaml` file:

```yaml
# docker-compose.yaml
version: "3"

services:
prometheus:
image: prom/prometheus:latest
extra_hosts:
- "host.docker.internal:host-gateway"
ports:
- "9090:9090"
volumes:
- ${PWD}/prometheus.yaml:/etc/prometheus/prometheus.yml

grafana:
image: grafana/grafana:latest
depends_on:
- prometheus
ports:
- "3000:3000"
```

Then, create the `prometheus.yaml` configuration file:

```yaml
# prometheus.yaml
global:
scrape_interval: 5s
evaluation_interval: 30s

scrape_configs:
- job_name: vllm
static_configs:
- targets:
- 'host.docker.internal:8000'
```

**Note**: Make sure the port number in `prometheus.yaml` matches the port number used when starting the vLLM service.

#### Start Services

Run the following command in the directory containing `docker-compose.yaml` and `prometheus.yaml`:

```bash
docker compose up
```

This will start Prometheus and Grafana services.

### 3) Configure Grafana Dashboard

#### Access Grafana

Navigate to `http://<your-host>:3000`. Log in with the default username (`admin`) and password (`admin`). You will be prompted to change the password on first login.

#### Add Prometheus Data Source

1. Navigate to `http://<your-host>:3000/connections/datasources/new` and select **Prometheus**.

2. On the Prometheus configuration page, add the Prometheus server URL in the **Connection** section. For this Docker Compose setup, Grafana and Prometheus run in separate containers, but Docker creates DNS names for each container. You can directly use `http://prometheus:9090`.

3. Click **Save & Test**. You should see a green checkmark showing "Successfully queried the Prometheus API."

#### Import Dashboard

1. Navigate to `http://<your-host>:3000/dashboard/import`.

2. Click **Upload JSON file**, then upload the `unified-cache-management/examples/metrics/grafana.json` file.

3. Select the Prometheus data source configured earlier.

4. Click **Import** to complete the import.

You should now be able to see the UCM monitoring dashboard with real-time visualization of all 9 metrics.

## Available Metrics

UCM exposes various metrics to monitor its performance. The following table lists all available metrics organized by category:

| Metric Name | Type | Description |
|------------|------|-------------|
| **Load Operation Metrics** | | |
| `ucm:load_requests_num` | Histogram | Number of requests loaded per `start_load_kv` call |
| `ucm:load_blocks_num` | Histogram | Number of blocks loaded per `start_load_kv` call |
| `ucm:load_duration` | Histogram | Time to load KV cache from UCM (milliseconds) |
| `ucm:load_speed` | Histogram | Speed of loading from UCM (GB/s) |
| **Save Operation Metrics** | | |
| `ucm:save_requests_num` | Histogram | Number of requests saved per `wait_for_save` call |
| `ucm:save_blocks_num` | Histogram | Number of blocks saved per `wait_for_save` call |
| `ucm:save_duration` | Histogram | Time to save to UCM (milliseconds) |
| `ucm:save_speed` | Histogram | Speed of saving to UCM (GB/s) |
| **Lookup Hit Rate Metrics** | | |
| `ucm:interval_lookup_hit_rates` | Histogram | Hit rate of UCM lookup requests |

## Prometheus Configuration

Metrics configuration is defined in the `unified-cache-management/examples/metrics/metrics_configs.yaml` file:

```yaml
log_interval: 5 # Interval in seconds for logging metrics

prometheus:
multiproc_dir: "/vllm-workspace" # Prometheus directory
metric_prefix: "ucm:" # Metric name prefix

enabled_metrics:
counters: true
gauges: true
histograms: true

histograms:
- name: "load_requests_num"
documentation: "Number of requests loaded from ucm"
buckets: [1, 5, 10, 20, 50, 100, 200, 500, 1000]
# ... other metric configurations
```

---

132 changes: 0 additions & 132 deletions docs/source/user-guide/prefix-cache/dram_store.md

This file was deleted.

1 change: 0 additions & 1 deletion docs/source/user-guide/prefix-cache/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -79,6 +79,5 @@ performance.

:::{toctree}
:maxdepth: 1
dram_store
nfs_store
:::
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -135,7 +135,7 @@ def _get_package_data_with_so():

setup(
name="uc-manager",
version="0.1.0rc3",
version="0.1.0rc4",
description="Unified Cache Management",
author="Unified Cache Team",
packages=find_packages(),
Expand Down
2 changes: 2 additions & 0 deletions test/common/capture_utils.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import functools
from typing import Any, Dict, List

from common.db_utils import write_to_db
Expand Down Expand Up @@ -44,6 +45,7 @@ def post_process(table_name: str, **kwargs) -> List[Dict[str, Any]]:

# ---------------- decorator ----------------
def export_vars(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
result = func(*args, **kwargs)
# If the function returns a dict containing '_data' or 'data', post-process it
Expand Down
Empty file.
Loading