Skip to content

Output of multiscaledeformableattention plugin is all zero #2155

@LeoCho1learning

Description

@LeoCho1learning

hi, I'm trying to test the released multiscaledeformableattention plugin, but all my output is 0.
here is my test code

import tensorrt as trt
import os
from cuda import cudart
import numpy as np


def getDeformAttnPlugin():
  for c in trt.get_plugin_registry().plugin_creator_list:
      if c.name == 'MultiscaleDeformableAttnPlugin_TRT':
          return c.create_plugin(c.name, trt.PluginFieldCollection([]))
  return None


def run():
  logger = trt.Logger(trt.Logger.ERROR)
  trt.init_libnvinfer_plugins(logger, '')

builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
config.max_workspace_size = 3 << 30

value = network.add_input('value', trt.float32, [1, 14960, 8, 32])
spatial_shapes = network.add_input('spatial_shapes', trt.int32, [4, 2])
level_start_index = network.add_input('level_start_index', trt.int32, [4, ])
sampling_locations = network.add_input('sampling_locations', trt.float32, [1, 6400, 8, 4, 4, 2])
attention_weights = network.add_input('attention_weights', trt.float32, [1, 6400, 8, 4, 4])

layer = network.add_plugin_v2(
    [value, spatial_shapes, level_start_index, sampling_locations, attention_weights],
    getDeformAttnPlugin()
)
network.mark_output(layer.get_output(0))

engineString = builder.build_serialized_network(network, config)

if engineString == None:
    print("Failed building engine!")
    return
print("Succeeded building engine!")

engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)

context = engine.create_execution_context()

nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)])
nOutput = engine.num_bindings - nInput

value = np.load('value.npy')
spatial_shapes = np.load('value_spatial_shapes.npy').astype(int)
level_start_index = np.load('value_level_start_index.npy').astype(int)
sampling_locations = np.load('sampling_locations.npy')
attention_weights = np.load('attention_weights.npy')

bufferH = []
bufferH.append(np.ascontiguousarray(value))
bufferH.append(np.ascontiguousarray(spatial_shapes))
bufferH.append(np.ascontiguousarray(level_start_index))
bufferH.append(np.ascontiguousarray(sampling_locations))
bufferH.append(np.ascontiguousarray(attention_weights))

for i in range(nOutput):
    bufferH.append(np.ones(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i))))

bufferD = []
for i in range(engine.num_bindings):
    bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1])

for i in range(nInput):
    cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)

context.set_binding_shape(0, [1, 14960, 8, 32])
context.set_binding_shape(1, [4, 2])
context.set_binding_shape(2, [4, ])
context.set_binding_shape(3, [1, 6400, 8, 4, 4, 2])
context.set_binding_shape(4, [1, 6400, 8, 4, 4])

# context.execute(1, bufferD)
context.execute_v2([bufferD[0],bufferD[1], bufferD[2], bufferD[3], bufferD[4], bufferD[5]])
# context.execute_v2(bufferD)


for i in range(nOutput):
    cudart.cudaMemcpy(bufferH[nInput+i].ctypes.data, bufferD[nInput+i], bufferH[nInput+i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)

for i in range(nOutput):
    print(bufferH[5])
    np.save('trt_output.npy', bufferH[nInput])

if __name__ == "__main__":
    run()

the output bufferH[5] is all 0.

can you help me find what is wrong here?

thanks a lot

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions