Skip to content

Segmentation fault of TensorRT 8.6 when running trtexec --onnx=<file> on GPU V100 #3630

@lhai37

Description

@lhai37

Description

I tried to run the attached model using trtexec tool on the V100 GPU with TensorRT 8.6 on CUDA 12.1, but it fails with a Segmentation fault (core dumped) error below. The same model can be loaded fine with TensorRT 8.4, CUDA 11.6, GTX 1080. Note: possibly related to #3631, this is the same model but with dynamic batch size.

./trtexec --onnx=trtexec_segfault.onnx --verbose
...omitted output, see attached log...
Segmentation fault (core dumped)

Environment

TensorRT Version: 8.6.1.6

NVIDIA GPU: Tesla V100

NVIDIA Driver Version: 545.23.08

CUDA Version: 12.1

CUDNN Version: 8.9.0.131-1+cuda12.1

Operating System: Ubuntu 20.04

Python Version (if applicable): N/A

Tensorflow Version (if applicable): N/A

PyTorch Version (if applicable): N/A

Baremetal or Container (if so, version): N/A

Relevant Files

Model link: https://drive.google.com/file/d/10old1P-M5gafvWjjLVI3khkiGnlVVB9L/view?usp=sharing

Output log: trtexec_segfault.txt

Steps To Reproduce

Commands or scripts: ./trtexec --onnx=trtexec_segfault.onnx --verbose

Have you tried the latest release?: Yes

Can this model run on other frameworks? For example run ONNX model with ONNXRuntime (polygraphy run <model.onnx> --onnxrt): This model can be run with TensorRT 8.4, CUDA 11.6, GTX 1080

Metadata

Metadata

Assignees

Labels

triagedIssue has been triaged by maintainers

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions