-
Notifications
You must be signed in to change notification settings - Fork 103
Populate dual solution when dual post solve is enabled #726
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
|
Looks good! Could we just add a simple LP test to track the behavior of having / not having a dual vector based on the presolve option? |
📝 WalkthroughWalkthroughAdds a dual_postsolve flag through presolve call paths to control restoring dual variables and reduced costs during postsolve; updates presolve options and method signatures, adjusts call sites, and adds tests validating dual_postsolve behavior. Changes
Estimated code review effort🎯 4 (Complex) | ⏱️ ~45–60 minutes
Pre-merge checks and finishing touches❌ Failed checks (1 warning)
✅ Passed checks (2 passed)
✨ Finishing touches
🧪 Generate unit tests (beta)
📜 Recent review detailsConfiguration used: Path: .coderabbit.yaml Review profile: CHILL Plan: Pro 📒 Files selected for processing (1)
🧰 Additional context used📓 Path-based instructions (4)**/*.{cu,cuh}📄 CodeRabbit inference engine (.github/.coderabbit_review_guide.md)
Files:
**/*.cu📄 CodeRabbit inference engine (.github/.coderabbit_review_guide.md)
Files:
**/*.{cu,cuh,cpp,hpp,h}📄 CodeRabbit inference engine (.github/.coderabbit_review_guide.md)
Files:
**/*.{cu,cpp,hpp,h}📄 CodeRabbit inference engine (.github/.coderabbit_review_guide.md)
Files:
🧠 Learnings (8)📓 Common learnings📚 Learning: 2025-11-25T10:20:49.822ZApplied to files:
📚 Learning: 2025-12-04T20:09:09.264ZApplied to files:
📚 Learning: 2025-11-25T10:20:49.822ZApplied to files:
📚 Learning: 2025-11-25T10:20:49.822ZApplied to files:
📚 Learning: 2025-11-25T10:20:49.822ZApplied to files:
📚 Learning: 2025-11-25T10:20:49.822ZApplied to files:
📚 Learning: 2025-11-25T10:20:49.822ZApplied to files:
⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (9)
🔇 Additional comments (1)
Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out. Comment |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 0
Caution
Some comments are outside the diff and can’t be posted inline due to platform limitations.
⚠️ Outside diff range comments (1)
cpp/src/linear_programming/solve.cu (1)
927-937: Dual solution overwritten with NaN after population.The
dual_postsolveflag is now passed toundo(), which populatesdual_solutionandreduced_costswhen enabled. However, lines 930-937 unconditionally overwrite these values withsignaling_NaN, negating the fix.Make the NaN fill conditional:
+ if (!settings.dual_postsolve) { thrust::fill(rmm::exec_policy(op_problem.get_handle_ptr()->get_stream()), dual_solution.data(), dual_solution.data() + dual_solution.size(), std::numeric_limits<f_t>::signaling_NaN()); thrust::fill(rmm::exec_policy(op_problem.get_handle_ptr()->get_stream()), reduced_costs.data(), reduced_costs.data() + reduced_costs.size(), std::numeric_limits<f_t>::signaling_NaN()); + }
📜 Review details
Configuration used: Path: .coderabbit.yaml
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (4)
cpp/src/linear_programming/solve.cu(1 hunks)cpp/src/mip/presolve/third_party_presolve.cpp(4 hunks)cpp/src/mip/presolve/third_party_presolve.hpp(1 hunks)cpp/src/mip/solve.cu(2 hunks)
🧰 Additional context used
📓 Path-based instructions (6)
**/*.{cu,cuh,cpp,hpp,h}
📄 CodeRabbit inference engine (.github/.coderabbit_review_guide.md)
**/*.{cu,cuh,cpp,hpp,h}: Track GPU device memory allocations and deallocations to prevent memory leaks; ensure cudaMalloc/cudaFree balance and cleanup of streams/events
Validate algorithm correctness in optimization logic: simplex pivots, branch-and-bound decisions, routing heuristics, and constraint/objective handling must produce correct results
Check numerical stability: prevent overflow/underflow, precision loss, division by zero/near-zero, and use epsilon comparisons for floating-point equality checks
Validate correct initialization of variable bounds, constraint coefficients, and algorithm state before solving; ensure reset when transitioning between algorithm phases (presolve, simplex, diving, crossover)
Ensure variables and constraints are accessed from the correct problem context (original vs presolve vs folded vs postsolve); verify index mapping consistency across problem transformations
For concurrent CUDA operations (barriers, async operations), explicitly create and manage dedicated streams instead of reusing the default stream; document stream lifecycle
Eliminate unnecessary host-device synchronization (cudaDeviceSynchronize) in hot paths that blocks GPU pipeline; use streams and events for async execution
Assess algorithmic complexity for large-scale problems (millions of variables/constraints); ensure O(n log n) or better complexity, not O(n²) or worse
Verify correct problem size checks before expensive GPU/CPU operations; prevent resource exhaustion on oversized problems
Identify assertions with overly strict numerical tolerances that fail on legitimate degenerate/edge cases (near-zero pivots, singular matrices, empty problems)
Ensure race conditions are absent in multi-GPU code and multi-threaded server implementations; verify proper synchronization of shared state
Refactor code duplication in solver components (3+ occurrences) into shared utilities; for GPU kernels, use templated device functions to avoid duplication
Check that hard-coded GPU de...
Files:
cpp/src/mip/presolve/third_party_presolve.hppcpp/src/linear_programming/solve.cucpp/src/mip/solve.cucpp/src/mip/presolve/third_party_presolve.cpp
**/*.{h,hpp,py}
📄 CodeRabbit inference engine (.github/.coderabbit_review_guide.md)
Verify C API does not break ABI stability (no struct layout changes, field reordering); maintain backward compatibility in Python and server APIs with deprecation warnings
Files:
cpp/src/mip/presolve/third_party_presolve.hpp
**/*.{cpp,hpp,h}
📄 CodeRabbit inference engine (.github/.coderabbit_review_guide.md)
**/*.{cpp,hpp,h}: Check for unclosed file handles when reading MPS/QPS problem files; ensure RAII patterns or proper cleanup in exception paths
Validate input sanitization to prevent buffer overflows and resource exhaustion attacks; avoid unsafe deserialization of problem files
Prevent thread-unsafe use of global and static variables; use proper mutex/synchronization in server code accessing shared solver state
Files:
cpp/src/mip/presolve/third_party_presolve.hppcpp/src/mip/presolve/third_party_presolve.cpp
**/*.{cu,cpp,hpp,h}
📄 CodeRabbit inference engine (.github/.coderabbit_review_guide.md)
Avoid inappropriate use of exceptions in performance-critical GPU operation paths; prefer error codes or CUDA error checking for latency-sensitive code
Files:
cpp/src/mip/presolve/third_party_presolve.hppcpp/src/linear_programming/solve.cucpp/src/mip/solve.cucpp/src/mip/presolve/third_party_presolve.cpp
**/*.{cu,cuh}
📄 CodeRabbit inference engine (.github/.coderabbit_review_guide.md)
**/*.{cu,cuh}: Every CUDA kernel launch and memory operation must have error checking with CUDA_CHECK or equivalent verification
Avoid reinventing functionality already available in Thrust, CCCL, or RMM libraries; prefer standard library utilities over custom implementations
Files:
cpp/src/linear_programming/solve.cucpp/src/mip/solve.cu
**/*.cu
📄 CodeRabbit inference engine (.github/.coderabbit_review_guide.md)
**/*.cu: Verify race conditions and correctness of GPU kernel shared memory, atomics, and warp-level operations
Detect inefficient GPU kernel launches with low occupancy or poor memory access patterns; optimize for coalesced memory access and minimize warp divergence in hot paths
Files:
cpp/src/linear_programming/solve.cucpp/src/mip/solve.cu
🧠 Learnings (11)
📓 Common learnings
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Reduce tight coupling between solver components (presolve, simplex, basis, barrier); increase modularity and reusability of optimization algorithms
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*.{cu,cuh,cpp,hpp,h} : Ensure variables and constraints are accessed from the correct problem context (original vs presolve vs folded vs postsolve); verify index mapping consistency across problem transformations
Applied to files:
cpp/src/mip/presolve/third_party_presolve.hppcpp/src/linear_programming/solve.cucpp/src/mip/solve.cucpp/src/mip/presolve/third_party_presolve.cpp
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*.{cu,cuh,cpp,hpp,h} : Refactor code duplication in solver components (3+ occurrences) into shared utilities; for GPU kernels, use templated device functions to avoid duplication
Applied to files:
cpp/src/mip/presolve/third_party_presolve.hppcpp/src/mip/solve.cucpp/src/mip/presolve/third_party_presolve.cpp
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*.{cu,cuh,cpp,hpp,h} : Validate correct initialization of variable bounds, constraint coefficients, and algorithm state before solving; ensure reset when transitioning between algorithm phases (presolve, simplex, diving, crossover)
Applied to files:
cpp/src/mip/presolve/third_party_presolve.hppcpp/src/linear_programming/solve.cucpp/src/mip/solve.cucpp/src/mip/presolve/third_party_presolve.cpp
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*test*.{cpp,cu,py} : Add tests for problem transformations: verify correctness of original→transformed→postsolve mappings and index consistency across problem representations
Applied to files:
cpp/src/mip/presolve/third_party_presolve.hppcpp/src/mip/solve.cucpp/src/mip/presolve/third_party_presolve.cpp
📚 Learning: 2025-12-04T20:09:09.264Z
Learnt from: chris-maes
Repo: NVIDIA/cuopt PR: 602
File: cpp/src/linear_programming/solve.cu:732-742
Timestamp: 2025-12-04T20:09:09.264Z
Learning: In cpp/src/linear_programming/solve.cu, the barrier solver does not currently return INFEASIBLE or UNBOUNDED status. It only returns OPTIMAL, TIME_LIMIT, NUMERICAL_ISSUES, or CONCURRENT_LIMIT.
Applied to files:
cpp/src/linear_programming/solve.cucpp/src/mip/solve.cu
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*.{cu,cuh,cpp,hpp,h} : Validate algorithm correctness in optimization logic: simplex pivots, branch-and-bound decisions, routing heuristics, and constraint/objective handling must produce correct results
Applied to files:
cpp/src/mip/solve.cucpp/src/mip/presolve/third_party_presolve.cpp
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*test*.{cpp,cu,py} : Add tests for algorithm phase transitions: verify correct initialization of bounds and state when transitioning from presolve to simplex to diving to crossover
Applied to files:
cpp/src/mip/solve.cucpp/src/mip/presolve/third_party_presolve.cpp
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*.{cu,cuh,cpp,hpp,h} : Identify assertions with overly strict numerical tolerances that fail on legitimate degenerate/edge cases (near-zero pivots, singular matrices, empty problems)
Applied to files:
cpp/src/mip/solve.cu
📚 Learning: 2025-12-04T04:11:12.640Z
Learnt from: chris-maes
Repo: NVIDIA/cuopt PR: 500
File: cpp/src/dual_simplex/scaling.cpp:68-76
Timestamp: 2025-12-04T04:11:12.640Z
Learning: In the cuOPT dual simplex solver, CSR/CSC matrices (including the quadratic objective matrix Q) are required to have valid dimensions and indices by construction. Runtime bounds checking in performance-critical paths like matrix scaling is avoided to prevent slowdowns. Validation is performed via debug-only check_matrix() calls wrapped in #ifdef CHECK_MATRIX.
Applied to files:
cpp/src/mip/solve.cu
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Reduce tight coupling between solver components (presolve, simplex, basis, barrier); increase modularity and reusability of optimization algorithms
Applied to files:
cpp/src/mip/presolve/third_party_presolve.cpp
⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (10)
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.12, amd64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.13, arm64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.12, arm64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.11, amd64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.11, arm64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.13, amd64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.10, amd64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.10, arm64, rockylinux8
- GitHub Check: wheel-build-cuopt-sh-client / 13.0.2, 3.10, amd64, rockylinux8
- GitHub Check: checks / check-style
🔇 Additional comments (7)
cpp/src/mip/presolve/third_party_presolve.hpp (1)
42-42: LGTM!The signature update is consistent with the implementation and properly places the
dual_postsolveparameter before the stream view argument.cpp/src/mip/solve.cu (2)
198-198: LGTM!Correctly hardcodes
dual_postsolve = falsefor MIP, as dual postsolve is not applicable for integer programs. Usingconstexprdocuments this as a compile-time decision.
249-249: LGTM!Consistent propagation of the
dual_postsolveflag to the presolver undo call.cpp/src/mip/presolve/third_party_presolve.cpp (4)
343-350: LGTM!Correctly disables presolve methods (DualInfer, SimpleSubstitution, Sparsify, Substitution) that are incompatible with dual postsolve. The log message provides helpful visibility for debugging.
359-368: LGTM!Appropriately configures Papilo presolve options for dual postsolve support by disabling component detection and linear dependency detection.
412-418: LGTM!The
dual_postsolveflag is correctly propagated toset_presolve_options.
459-474: Code change correctly enables dual postsolve support in Papilo.Papilo 2.0 introduced support for dual postsolving across multiple presolvers (DomCol, Dualfix, SingletonCol, ParallelCol, ParallelRow, Propagation, FixContinuous), with dual postsolve activated when the original problem has no integer variables. When
dual_postsolveis true, correctly populating thepapilo::Solution<f_t>with dual variables, reduced costs, and setting the solution type tokPrimalDualensures Papilo's dual postsolve routines process the complete solution information.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 0
🧹 Nitpick comments (1)
cpp/tests/linear_programming/pdlp_test.cu (1)
862-889: Enhance test to validate dual solution correctness, not just presence.The test checks whether the dual solution exists based on the
dual_postsolveflag, which addresses the basic requirements. However, based on coding guidelines for testing problem transformations, consider adding:
- Verification that dual values are numerically correct (e.g., satisfy complementary slackness conditions)
- Testing with
presolve=falseto ensure dual solutions are populated correctly without presolve- Validation that dual solution indices correctly map back to the original problem space after postsolve transformation
Apply this diff to add basic dual value correctness checks:
{ solver_settings.dual_postsolve = true; optimization_problem_solution_t<int, double> solution = solve_lp(&handle_, op_problem, solver_settings); EXPECT_EQ((int)solution.get_termination_status(), CUOPT_TERIMINATION_STATUS_OPTIMAL); EXPECT_EQ(solution.get_dual_solution().size(), op_problem.get_n_constraints()); + // Verify dual values are non-trivial (not all zeros) + EXPECT_FALSE(thrust::all_of(handle_.get_thrust_policy(), + solution.get_dual_solution().begin(), + solution.get_dual_solution().end(), + thrust::placeholders::_1 == 0.0)); } + + // Test without presolve to ensure dual solution is still populated + { + solver_settings.presolve = false; + solver_settings.dual_postsolve = true; + optimization_problem_solution_t<int, double> solution = + solve_lp(&handle_, op_problem, solver_settings); + EXPECT_EQ((int)solution.get_termination_status(), CUOPT_TERIMINATION_STATUS_OPTIMAL); + EXPECT_EQ(solution.get_dual_solution().size(), op_problem.get_n_constraints()); + }Based on learnings: Test problem transformations with index consistency validation.
📜 Review details
Configuration used: Path: .coderabbit.yaml
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (2)
cpp/src/linear_programming/solve.cu(1 hunks)cpp/tests/linear_programming/pdlp_test.cu(2 hunks)
🚧 Files skipped from review as they are similar to previous changes (1)
- cpp/src/linear_programming/solve.cu
🧰 Additional context used
📓 Path-based instructions (5)
**/*.{cu,cuh}
📄 CodeRabbit inference engine (.github/.coderabbit_review_guide.md)
**/*.{cu,cuh}: Every CUDA kernel launch and memory operation must have error checking with CUDA_CHECK or equivalent verification
Avoid reinventing functionality already available in Thrust, CCCL, or RMM libraries; prefer standard library utilities over custom implementations
Files:
cpp/tests/linear_programming/pdlp_test.cu
**/*.cu
📄 CodeRabbit inference engine (.github/.coderabbit_review_guide.md)
**/*.cu: Verify race conditions and correctness of GPU kernel shared memory, atomics, and warp-level operations
Detect inefficient GPU kernel launches with low occupancy or poor memory access patterns; optimize for coalesced memory access and minimize warp divergence in hot paths
Files:
cpp/tests/linear_programming/pdlp_test.cu
**/*.{cu,cuh,cpp,hpp,h}
📄 CodeRabbit inference engine (.github/.coderabbit_review_guide.md)
**/*.{cu,cuh,cpp,hpp,h}: Track GPU device memory allocations and deallocations to prevent memory leaks; ensure cudaMalloc/cudaFree balance and cleanup of streams/events
Validate algorithm correctness in optimization logic: simplex pivots, branch-and-bound decisions, routing heuristics, and constraint/objective handling must produce correct results
Check numerical stability: prevent overflow/underflow, precision loss, division by zero/near-zero, and use epsilon comparisons for floating-point equality checks
Validate correct initialization of variable bounds, constraint coefficients, and algorithm state before solving; ensure reset when transitioning between algorithm phases (presolve, simplex, diving, crossover)
Ensure variables and constraints are accessed from the correct problem context (original vs presolve vs folded vs postsolve); verify index mapping consistency across problem transformations
For concurrent CUDA operations (barriers, async operations), explicitly create and manage dedicated streams instead of reusing the default stream; document stream lifecycle
Eliminate unnecessary host-device synchronization (cudaDeviceSynchronize) in hot paths that blocks GPU pipeline; use streams and events for async execution
Assess algorithmic complexity for large-scale problems (millions of variables/constraints); ensure O(n log n) or better complexity, not O(n²) or worse
Verify correct problem size checks before expensive GPU/CPU operations; prevent resource exhaustion on oversized problems
Identify assertions with overly strict numerical tolerances that fail on legitimate degenerate/edge cases (near-zero pivots, singular matrices, empty problems)
Ensure race conditions are absent in multi-GPU code and multi-threaded server implementations; verify proper synchronization of shared state
Refactor code duplication in solver components (3+ occurrences) into shared utilities; for GPU kernels, use templated device functions to avoid duplication
Check that hard-coded GPU de...
Files:
cpp/tests/linear_programming/pdlp_test.cu
**/*test*.{cpp,cu,py}
📄 CodeRabbit inference engine (.github/.coderabbit_review_guide.md)
**/*test*.{cpp,cu,py}: Write tests validating numerical correctness of optimization results (not just 'runs without error'); test degenerate cases (infeasible, unbounded, empty, singleton problems)
Ensure test isolation: prevent GPU state, cached memory, and global variables from leaking between test cases; verify each test independently initializes its environment
Add tests for algorithm phase transitions: verify correct initialization of bounds and state when transitioning from presolve to simplex to diving to crossover
Add tests for problem transformations: verify correctness of original→transformed→postsolve mappings and index consistency across problem representations
Test with free variables, singleton problems, and extreme problem dimensions near resource limits to validate edge case handling
Files:
cpp/tests/linear_programming/pdlp_test.cu
**/*.{cu,cpp,hpp,h}
📄 CodeRabbit inference engine (.github/.coderabbit_review_guide.md)
Avoid inappropriate use of exceptions in performance-critical GPU operation paths; prefer error codes or CUDA error checking for latency-sensitive code
Files:
cpp/tests/linear_programming/pdlp_test.cu
🧠 Learnings (11)
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*test*.{cpp,cu,py} : Add tests for problem transformations: verify correctness of original→transformed→postsolve mappings and index consistency across problem representations
Applied to files:
cpp/tests/linear_programming/pdlp_test.cu
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*test*.{cpp,cu,py} : Add tests for algorithm phase transitions: verify correct initialization of bounds and state when transitioning from presolve to simplex to diving to crossover
Applied to files:
cpp/tests/linear_programming/pdlp_test.cu
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*test*.{cpp,cu,py} : Test with free variables, singleton problems, and extreme problem dimensions near resource limits to validate edge case handling
Applied to files:
cpp/tests/linear_programming/pdlp_test.cu
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*.{cu,cuh,cpp,hpp,h} : Refactor code duplication in solver components (3+ occurrences) into shared utilities; for GPU kernels, use templated device functions to avoid duplication
Applied to files:
cpp/tests/linear_programming/pdlp_test.cu
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*.{cu,cuh,cpp,hpp,h} : Validate algorithm correctness in optimization logic: simplex pivots, branch-and-bound decisions, routing heuristics, and constraint/objective handling must produce correct results
Applied to files:
cpp/tests/linear_programming/pdlp_test.cu
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*test*.{cpp,cu,py} : Write tests validating numerical correctness of optimization results (not just 'runs without error'); test degenerate cases (infeasible, unbounded, empty, singleton problems)
Applied to files:
cpp/tests/linear_programming/pdlp_test.cu
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*.{cu,cuh,cpp,hpp,h} : Ensure variables and constraints are accessed from the correct problem context (original vs presolve vs folded vs postsolve); verify index mapping consistency across problem transformations
Applied to files:
cpp/tests/linear_programming/pdlp_test.cu
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*.{cu,cuh,cpp,hpp,h} : Validate correct initialization of variable bounds, constraint coefficients, and algorithm state before solving; ensure reset when transitioning between algorithm phases (presolve, simplex, diving, crossover)
Applied to files:
cpp/tests/linear_programming/pdlp_test.cu
📚 Learning: 2025-12-04T20:09:09.264Z
Learnt from: chris-maes
Repo: NVIDIA/cuopt PR: 602
File: cpp/src/linear_programming/solve.cu:732-742
Timestamp: 2025-12-04T20:09:09.264Z
Learning: In cpp/src/linear_programming/solve.cu, the barrier solver does not currently return INFEASIBLE or UNBOUNDED status. It only returns OPTIMAL, TIME_LIMIT, NUMERICAL_ISSUES, or CONCURRENT_LIMIT.
Applied to files:
cpp/tests/linear_programming/pdlp_test.cu
📚 Learning: 2025-12-04T04:11:12.640Z
Learnt from: chris-maes
Repo: NVIDIA/cuopt PR: 500
File: cpp/src/dual_simplex/scaling.cpp:68-76
Timestamp: 2025-12-04T04:11:12.640Z
Learning: In the cuOPT dual simplex solver, CSR/CSC matrices (including the quadratic objective matrix Q) are required to have valid dimensions and indices by construction. Runtime bounds checking in performance-critical paths like matrix scaling is avoided to prevent slowdowns. Validation is performed via debug-only check_matrix() calls wrapped in #ifdef CHECK_MATRIX.
Applied to files:
cpp/tests/linear_programming/pdlp_test.cu
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*.{cu,cuh,cpp,hpp,h} : Verify correct problem size checks before expensive GPU/CPU operations; prevent resource exhaustion on oversized problems
Applied to files:
cpp/tests/linear_programming/pdlp_test.cu
⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (12)
- GitHub Check: conda-cpp-build / 13.0.2, 3.10, arm64, rockylinux8
- GitHub Check: wheel-build-cuopt-server / 12.9.1, 3.13, amd64, rockylinux8
- GitHub Check: wheel-build-cuopt-server / 13.0.2, 3.13, amd64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.13, arm64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.12, arm64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.11, amd64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.12, amd64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.13, amd64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.10, amd64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.10, arm64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.11, arm64, rockylinux8
- GitHub Check: wheel-build-cuopt-sh-client / 13.0.2, 3.10, amd64, rockylinux8
🔇 Additional comments (2)
cpp/tests/linear_programming/pdlp_test.cu (2)
213-213: LGTM!Explicitly disabling
dual_postsolveensures this existing test remains isolated from the new feature.
220-221: LGTM!Correctly prints
settings.presolvewhich reflects the actual configuration being tested.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 0
Caution
Some comments are outside the diff and can’t be posted inline due to platform limitations.
⚠️ Outside diff range comments (1)
cpp/src/linear_programming/solve.cu (1)
914-919: Add explicit CUDA error checking for device_copy operations.The
device_copycalls useraft::copy, which performs asynchronous memory transfers without propagating CUDA errors as exceptions. While the code is within a try-catch block that handles allocation failures, it does not explicitly check for CUDA errors after the copy operations. Add stream synchronization with error checking after these memory operations to catch any CUDA failures that occur asynchronously, following the pattern used elsewhere in the codebase withRAFT_CUDA_TRY.
📜 Review details
Configuration used: Path: .coderabbit.yaml
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (1)
cpp/src/linear_programming/solve.cu(1 hunks)
🧰 Additional context used
📓 Path-based instructions (4)
**/*.{cu,cuh}
📄 CodeRabbit inference engine (.github/.coderabbit_review_guide.md)
**/*.{cu,cuh}: Every CUDA kernel launch and memory operation must have error checking with CUDA_CHECK or equivalent verification
Avoid reinventing functionality already available in Thrust, CCCL, or RMM libraries; prefer standard library utilities over custom implementations
Files:
cpp/src/linear_programming/solve.cu
**/*.cu
📄 CodeRabbit inference engine (.github/.coderabbit_review_guide.md)
**/*.cu: Verify race conditions and correctness of GPU kernel shared memory, atomics, and warp-level operations
Detect inefficient GPU kernel launches with low occupancy or poor memory access patterns; optimize for coalesced memory access and minimize warp divergence in hot paths
Files:
cpp/src/linear_programming/solve.cu
**/*.{cu,cuh,cpp,hpp,h}
📄 CodeRabbit inference engine (.github/.coderabbit_review_guide.md)
**/*.{cu,cuh,cpp,hpp,h}: Track GPU device memory allocations and deallocations to prevent memory leaks; ensure cudaMalloc/cudaFree balance and cleanup of streams/events
Validate algorithm correctness in optimization logic: simplex pivots, branch-and-bound decisions, routing heuristics, and constraint/objective handling must produce correct results
Check numerical stability: prevent overflow/underflow, precision loss, division by zero/near-zero, and use epsilon comparisons for floating-point equality checks
Validate correct initialization of variable bounds, constraint coefficients, and algorithm state before solving; ensure reset when transitioning between algorithm phases (presolve, simplex, diving, crossover)
Ensure variables and constraints are accessed from the correct problem context (original vs presolve vs folded vs postsolve); verify index mapping consistency across problem transformations
For concurrent CUDA operations (barriers, async operations), explicitly create and manage dedicated streams instead of reusing the default stream; document stream lifecycle
Eliminate unnecessary host-device synchronization (cudaDeviceSynchronize) in hot paths that blocks GPU pipeline; use streams and events for async execution
Assess algorithmic complexity for large-scale problems (millions of variables/constraints); ensure O(n log n) or better complexity, not O(n²) or worse
Verify correct problem size checks before expensive GPU/CPU operations; prevent resource exhaustion on oversized problems
Identify assertions with overly strict numerical tolerances that fail on legitimate degenerate/edge cases (near-zero pivots, singular matrices, empty problems)
Ensure race conditions are absent in multi-GPU code and multi-threaded server implementations; verify proper synchronization of shared state
Refactor code duplication in solver components (3+ occurrences) into shared utilities; for GPU kernels, use templated device functions to avoid duplication
Check that hard-coded GPU de...
Files:
cpp/src/linear_programming/solve.cu
**/*.{cu,cpp,hpp,h}
📄 CodeRabbit inference engine (.github/.coderabbit_review_guide.md)
Avoid inappropriate use of exceptions in performance-critical GPU operation paths; prefer error codes or CUDA error checking for latency-sensitive code
Files:
cpp/src/linear_programming/solve.cu
🧠 Learnings (8)
📓 Common learnings
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*test*.{cpp,cu,py} : Add tests for problem transformations: verify correctness of original→transformed→postsolve mappings and index consistency across problem representations
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*.{cu,cuh,cpp,hpp,h} : Validate correct initialization of variable bounds, constraint coefficients, and algorithm state before solving; ensure reset when transitioning between algorithm phases (presolve, simplex, diving, crossover)
Applied to files:
cpp/src/linear_programming/solve.cu
📚 Learning: 2025-12-04T20:09:09.264Z
Learnt from: chris-maes
Repo: NVIDIA/cuopt PR: 602
File: cpp/src/linear_programming/solve.cu:732-742
Timestamp: 2025-12-04T20:09:09.264Z
Learning: In cpp/src/linear_programming/solve.cu, the barrier solver does not currently return INFEASIBLE or UNBOUNDED status. It only returns OPTIMAL, TIME_LIMIT, NUMERICAL_ISSUES, or CONCURRENT_LIMIT.
Applied to files:
cpp/src/linear_programming/solve.cu
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*.{cu,cuh,cpp,hpp,h} : Validate algorithm correctness in optimization logic: simplex pivots, branch-and-bound decisions, routing heuristics, and constraint/objective handling must produce correct results
Applied to files:
cpp/src/linear_programming/solve.cu
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Reduce tight coupling between solver components (presolve, simplex, basis, barrier); increase modularity and reusability of optimization algorithms
Applied to files:
cpp/src/linear_programming/solve.cu
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*.{cu,cuh,cpp,hpp,h} : Ensure variables and constraints are accessed from the correct problem context (original vs presolve vs folded vs postsolve); verify index mapping consistency across problem transformations
Applied to files:
cpp/src/linear_programming/solve.cu
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*.{cu,cuh,cpp,hpp,h} : Refactor code duplication in solver components (3+ occurrences) into shared utilities; for GPU kernels, use templated device functions to avoid duplication
Applied to files:
cpp/src/linear_programming/solve.cu
📚 Learning: 2025-11-25T10:20:49.822Z
Learnt from: CR
Repo: NVIDIA/cuopt PR: 0
File: .github/.coderabbit_review_guide.md:0-0
Timestamp: 2025-11-25T10:20:49.822Z
Learning: Applies to **/*test*.{cpp,cu,py} : Add tests for problem transformations: verify correctness of original→transformed→postsolve mappings and index consistency across problem representations
Applied to files:
cpp/src/linear_programming/solve.cu
⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (9)
- GitHub Check: wheel-build-cuopt-sh-client / 13.0.2, 3.10, amd64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.11, arm64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.12, arm64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.13, arm64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.10, amd64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.13, amd64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.11, amd64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.12, amd64, rockylinux8
- GitHub Check: wheel-build-cuopt-mps-parser / 13.0.2, 3.10, arm64, rockylinux8
🔇 Additional comments (1)
cpp/src/linear_programming/solve.cu (1)
922-928: Dual postsolve flag correctly propagates to presolver::undo()The change properly passes
settings.dual_postsolveto control dual variable restoration during postsolve. All verifications pass:
- ✓
settings.dual_postsolveis properly initialized (defaults totrue)- ✓
presolver->undo()correctly handles the flag with conditional logic for dual/reduced cost population- ✓ Test coverage exists:
TEST(pdlp_class, dual_postsolve_size)verifies behavior when dual_postsolve is enabled vs. disabled- ✓ CUDA error handling is properly delegated to RAFT library (standard practice)
No issues found. The fix correctly addresses the bug described in PR objectives.
Kh4ster
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
All good for me, thanks!
|
/merge |
This PR fixes a bug in populating dual post solve information.
Summary by CodeRabbit
New Features
Bug Fixes
Tests
✏️ Tip: You can customize this high-level summary in your review settings.