Skip to content

Conversation

@tmckayus
Copy link
Contributor

@tmckayus tmckayus commented Jan 31, 2026

NOTE: Remote solve is stubbed in this commit and returns dummy solutions. Full gRPC implementation will be added in a follow-up PR.

This change adds problem and solution class hierarchies which allow data to be in GPU structures or host structures throughout. This is foundational to supporting remote execution integrated at the solver level.

The C API and Python API are unchanged.

If remote execution is enabled, the various APIs will construct a problem in host memory and CUDA initialization will be avoided. Remote solving is stubbed out in this change, and will return dummy values. When remote solving is done, solutions will be returned in host memory.

Remote execution is enabled by setting the following env vars:
CUOPT_REMOTE_HOST=somehost
CUOPT_REMOTE_PORT=1234

MEMORY_MODEL_ARCHITECTURE.md

Summary by CodeRabbit

  • New Features

    • Runtime multi-backend support (CPU/GPU) with optional remote solve and unified interface-based problem/solution workflow.
    • CPU-backed solutions, CPU warm-start support, and batch-solve entrypoints.
    • Lazy-loading of Python submodules for lighter host-only installs.
  • Improvements

    • Backend-aware initialization to skip GPU setup when not needed.
    • Reduced copies and faster transfers via move/zero-copy paths and unified CPU/GPU solution conversion.

@tmckayus tmckayus requested review from a team as code owners January 31, 2026 02:03
@tmckayus
Copy link
Contributor Author

this is a cleaner version of #807

@tmckayus tmckayus added feature request New feature or request non-breaking Introduces a non-breaking change P0 labels Jan 31, 2026
@coderabbitai
Copy link

coderabbitai bot commented Jan 31, 2026

📝 Walkthrough

Walkthrough

Introduces a backend-aware optimization_problem_interface with CPU/GPU implementations, interface-based solve and solution interfaces (local and remote stubs), CPU↔GPU warm-start and solution conversion utilities, move-based zero-copy setters, and broad C/Cython/Python binding updates to route through the new interfaces.

Changes

Cohort / File(s) Summary
Core Interface & Backends
cpp/include/cuopt/linear_programming/optimization_problem_interface.hpp, cpp/include/.../optimization_problem_utils.hpp, cpp/src/linear_programming/gpu_optimization_problem.cu, cpp/src/linear_programming/cpu_optimization_problem.cpp, cpp/src/linear_programming/backend_selection.cpp
Adds optimization_problem_interface_t with gpu_optimization_problem_t/cpu_optimization_problem_t, runtime backend selection (get_backend_type()/env vars), host/device getters/setters, populate helpers, conversions (to_optimization_problem, write_to_mps).
Solution Interfaces & Converters
cpp/include/.../optimization_problem_solution_interface.hpp, cpp/include/.../gpu_optimization_problem_solution.hpp, cpp/include/.../cpu_optimization_problem_solution.hpp, cpp/src/linear_programming/solution_conversion.cu
Adds optimization_problem_solution_interface_t, lp_solution_interface_t, mip_solution_interface_t, CPU/GPU solution wrappers, and conversion methods to Cython result types.
Solve API, Remote Stubs & Dispatch
cpp/include/cuopt/linear_programming/solve.hpp, cpp/src/linear_programming/solve.cu, cpp/src/linear_programming/solve_remote.cu, cpp/include/.../solve_remote.hpp
Introduces interface-based solve_lp/solve_mip overloads returning solution interfaces, remote execution stubs for CPU/GPU, and routing between remote/local solving.
Warm-start Utilities & Settings
cpp/include/.../pdlp/pdlp_warm_start_data.hpp, cpp/include/.../cpu_pdlp_warm_start_data.hpp, cpp/src/linear_programming/cpu_pdlp_warm_start_data.cu, cpp/include/.../pdlp/solver_settings.hpp, cpp/src/linear_programming/solver_settings.cu
Adds cpu_pdlp_warm_start_data_t, conversion helpers CPU↔GPU, is_populated() predicate, and CPU warm-start accessors in solver settings.
C API, CLI & Internal Views
cpp/src/linear_programming/cuopt_c.cpp, cpp/src/linear_programming/cuopt_c_internal.hpp, cpp/cuopt_cli.cpp
Refactors C API/CLI internals to use optimization_problem_interface and solution interfaces, adds backend-aware resource init (conditional CUDA setup), and replaces direct op_problem device/host copies with interface copy-to-host helpers. Public C API signatures preserved.
Cython / Python Bindings & Utilities
cpp/include/.../utilities/cython_solve.hpp, cpp/src/linear_programming/utilities/cython_solve.cu, cpp/include/.../utilities/cython_types.hpp, python/cuopt/cuopt/__init__.py, python/.../solver/solver.pxd, python/.../solver/solver_wrapper.pyx, python/.../utilities/utils.py
Adds GPU/CPU Cython result types, variant-based solver_ret_t, new call_solve/call_batch_solve signatures accepting interfaces, CPU/GPU conversion logic, Cython wrapper updates, and lazy-loading Python submodules.
Move-based Setters & optimization_problem_t changes
cpp/include/cuopt/linear_programming/optimization_problem.hpp, cpp/src/linear_programming/optimization_problem.cu
Adds rvalue (move) setters on optimization_problem_t to accept rmm::device_uvector rvalues for zero-copy ownership transfer (CSR, bounds, objective, types, row types).
Remote Solve Header & Declarations
cpp/include/cuopt/linear_programming/solve_remote.hpp
Adds forward declarations and remote-solve function templates for CPU/GPU-backed problems.
Build & New Sources
cpp/src/linear_programming/CMakeLists.txt, many new source files (gpu_optimization_problem.cu, cpu_optimization_problem.cpp, backend_selection.cpp, solve_remote.cu, solution_conversion.cu, cpu_pdlp_warm_start_data.cu, ... )
Adds numerous new source files to LP core build list so new backends, converters, and remote stubs are compiled into the core.
Tests & Packaging
cpp/tests/linear_programming/c_api_tests/c_api_tests.cpp, python/libcuopt/pyproject.toml, python/cuopt/cuopt/tests/linear_programming/test_lp_solver.py
Updates tests to use interface-based get_problem(), adjusts packaging metadata, and forces PDLP method in a warm-start test.
Cython utility header changes
cpp/include/cuopt/linear_programming/utilities/cython_solve.hpp
Replaces in-file ret types with cython_types.hpp, switches solver_ret_t to variant of GPU/CPU ret types, and exposes call_solve_* APIs that accept interfaces (batch support added).

Estimated code review effort

🎯 5 (Critical) | ⏱️ ~120 minutes

Possibly related PRs

  • Batch PDLP #805 — May overlap on solver dispatch/signature changes, remote execution stubs, and PDLP/batch-mode behavior.
🚥 Pre-merge checks | ✅ 2 | ❌ 1
❌ Failed checks (1 warning)
Check name Status Explanation Resolution
Docstring Coverage ⚠️ Warning Docstring coverage is 13.67% which is insufficient. The required threshold is 80.00%. Write docstrings for the functions missing them to satisfy the coverage threshold.
✅ Passed checks (2 passed)
Check name Status Explanation
Description Check ✅ Passed Check skipped - CodeRabbit’s high-level summary is enabled.
Title check ✅ Passed The title directly describes the main objective of the PR: adding memory model support for host-resident problem data, which is the primary change across all the modifications.

✏️ Tip: You can configure your own custom pre-merge checks in the settings.

✨ Finishing touches
  • 📝 Generate docstrings
🧪 Generate unit tests (beta)
  • Create PR with unit tests
  • Post copyable unit tests in a comment

Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❤️ Share

Comment @coderabbitai help to get the list of available commands and usage tips.

Copy link

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 6

Caution

Some comments are outside the diff and can’t be posted inline due to platform limitations.

⚠️ Outside diff range comments (8)
cpp/include/cuopt/linear_programming/utilities/callbacks_implems.hpp (2)

41-51: ⚠️ Potential issue | 🟠 Major

Guard NULL PyObject returns before DECREF or use.

PyObject_CallMethod can return nullptr; the new Py_DECREF(res) will crash on failure, and numba_matrix / numpy_array can also be nullptr. Add NULL checks and use Py_XDECREF to avoid segfaults and ensure error propagation.

🔧 Proposed fix (safe NULL handling)
   void get_solution(void* data, void* objective_value) override
   {
-    PyObject* numba_matrix =
-      data_on_device() ? get_numba_matrix(data, n_variables) : get_numpy_array(data, n_variables);
-    PyObject* numpy_array =
-      data_on_device() ? get_numba_matrix(objective_value, 1) : get_numpy_array(objective_value, 1);
+    const bool on_device = data_on_device();
+    PyObject* numba_matrix =
+      on_device ? get_numba_matrix(data, n_variables) : get_numpy_array(data, n_variables);
+    PyObject* numpy_array =
+      on_device ? get_numba_matrix(objective_value, 1) : get_numpy_array(objective_value, 1);
+    if (!numba_matrix || !numpy_array) {
+      Py_XDECREF(numba_matrix);
+      Py_XDECREF(numpy_array);
+      PyErr_Print();
+      return;
+    }
     PyObject* res =
       PyObject_CallMethod(this->pyCallbackClass, "get_solution", "(OO)", numba_matrix, numpy_array);
-    Py_DECREF(numba_matrix);
-    Py_DECREF(numpy_array);
-    Py_DECREF(res);
+    if (!res) { PyErr_Print(); }
+    Py_XDECREF(res);
+    Py_XDECREF(numba_matrix);
+    Py_XDECREF(numpy_array);
   }

80-90: ⚠️ Potential issue | 🟠 Major

Add NULL checks for set_solution callback objects.

Same failure mode as get_solution: PyObject_CallMethod can return nullptr, and Py_DECREF on it will crash. Guard and use Py_XDECREF, plus early return if inputs fail to construct.

🔧 Proposed fix (safe NULL handling)
   void set_solution(void* data, void* objective_value) override
   {
-    PyObject* numba_matrix =
-      data_on_device() ? get_numba_matrix(data, n_variables) : get_numpy_array(data, n_variables);
-    PyObject* numpy_array =
-      data_on_device() ? get_numba_matrix(objective_value, 1) : get_numpy_array(objective_value, 1);
+    const bool on_device = data_on_device();
+    PyObject* numba_matrix =
+      on_device ? get_numba_matrix(data, n_variables) : get_numpy_array(data, n_variables);
+    PyObject* numpy_array =
+      on_device ? get_numba_matrix(objective_value, 1) : get_numpy_array(objective_value, 1);
+    if (!numba_matrix || !numpy_array) {
+      Py_XDECREF(numba_matrix);
+      Py_XDECREF(numpy_array);
+      PyErr_Print();
+      return;
+    }
     PyObject* res =
       PyObject_CallMethod(this->pyCallbackClass, "set_solution", "(OO)", numba_matrix, numpy_array);
-    Py_DECREF(numba_matrix);
-    Py_DECREF(numpy_array);
-    Py_DECREF(res);
+    if (!res) { PyErr_Print(); }
+    Py_XDECREF(res);
+    Py_XDECREF(numba_matrix);
+    Py_XDECREF(numpy_array);
   }
cpp/src/linear_programming/cuopt_c.cpp (5)

50-73: ⚠️ Potential issue | 🟠 Major

Guard view creation to keep the C API exception-safe.
create_view_from_mps_data_model() is outside the try/catch; if it throws, the C boundary is crossed and problem_and_stream leaks. Wrap view creation and use RAII to ensure cleanup.

🛠️ Suggested fix (exception-safe view creation)
-  problem_and_stream_view_t* problem_and_stream = new problem_and_stream_view_t();
+  auto problem_and_stream = std::make_unique<problem_and_stream_view_t>();
   std::string filename_str(filename);
   bool input_mps_strict = false;
   std::unique_ptr<mps_data_t> mps_data_model_ptr;
   try {
     mps_data_model_ptr = std::make_unique<mps_data_t>(
       parse_mps<cuopt_int_t, cuopt_float_t>(filename_str, input_mps_strict));
   } catch (const std::exception& e) {
     CUOPT_LOG_INFO("Error parsing MPS file: %s", e.what());
-    delete problem_and_stream;
     *problem_ptr = nullptr;
     if (std::string(e.what()).find("Error opening MPS file") != std::string::npos) {
       return CUOPT_MPS_FILE_ERROR;
     } else {
       return CUOPT_MPS_PARSE_ERROR;
     }
   }
-  problem_and_stream->op_problem = mps_data_model_ptr.release();
-  problem_and_stream->view       = create_view_from_mps_data_model(*problem_and_stream->op_problem);
-  problem_and_stream->view.set_is_device_memory(false);
-
-  *problem_ptr = static_cast<cuOptOptimizationProblem>(problem_and_stream);
+  try {
+    problem_and_stream->view = create_view_from_mps_data_model(*mps_data_model_ptr);
+    problem_and_stream->view.set_is_device_memory(false);
+    problem_and_stream->op_problem = mps_data_model_ptr.release();
+  } catch (const std::exception& e) {
+    CUOPT_LOG_INFO("Error creating view from MPS data: %s", e.what());
+    *problem_ptr = nullptr;
+    return CUOPT_INVALID_ARGUMENT;
+  }
+
+  *problem_ptr = static_cast<cuOptOptimizationProblem>(problem_and_stream.release());

737-744: ⚠️ Potential issue | 🟡 Minor

Add the same op_problem null check as other getters.
This keeps cuOptIsMIP aligned with the other accessors and avoids dereferencing invalid handles.

🔧 Suggested fix
   problem_and_stream_view_t* problem_and_stream_view =
     static_cast<problem_and_stream_view_t*>(problem);
+  if (!problem_and_stream_view->op_problem) { return CUOPT_INVALID_ARGUMENT; }
   *is_mip_ptr = static_cast<cuopt_int_t>(problem_and_stream_view->is_mip());

747-798: ⚠️ Potential issue | 🟠 Major

Make cuOptSolve exception-safe to avoid leaks on solve failure.
If solve_mip/solve_lp throws, the allocated solution wrapper leaks and the exception crosses the C boundary.

🛠️ Suggested fix (RAII + try/catch)
-    solution_and_stream_view_t* solution_and_stream_view =
-      new solution_and_stream_view_t(true, handle);
-    solution_and_stream_view->mip_solution_ptr = new mip_solution_t<cuopt_int_t, cuopt_float_t>(
-      solve_mip<cuopt_int_t, cuopt_float_t>(handle, view, mip_settings));
-    *solution_ptr = static_cast<cuOptSolution>(solution_and_stream_view);
+    auto solution_and_stream_view =
+      std::make_unique<solution_and_stream_view_t>(true, handle);
+    try {
+      solution_and_stream_view->mip_solution_ptr =
+        new mip_solution_t<cuopt_int_t, cuopt_float_t>(
+          solve_mip<cuopt_int_t, cuopt_float_t>(handle, view, mip_settings));
+    } catch (const std::exception& e) {
+      CUOPT_LOG_INFO("MIP solve failed: %s", e.what());
+      return CUOPT_INVALID_ARGUMENT;
+    }
+    *solution_ptr = static_cast<cuOptSolution>(solution_and_stream_view.release());
...
-    solution_and_stream_view_t* solution_and_stream_view =
-      new solution_and_stream_view_t(false, handle);
-    solution_and_stream_view->lp_solution_ptr =
-      new optimization_problem_solution_t<cuopt_int_t, cuopt_float_t>(
-        solve_lp<cuopt_int_t, cuopt_float_t>(handle, view, pdlp_settings));
-    *solution_ptr = static_cast<cuOptSolution>(solution_and_stream_view);
+    auto solution_and_stream_view =
+      std::make_unique<solution_and_stream_view_t>(false, handle);
+    try {
+      solution_and_stream_view->lp_solution_ptr =
+        new optimization_problem_solution_t<cuopt_int_t, cuopt_float_t>(
+          solve_lp<cuopt_int_t, cuopt_float_t>(handle, view, pdlp_settings));
+    } catch (const std::exception& e) {
+      CUOPT_LOG_INFO("LP solve failed: %s", e.what());
+      return CUOPT_INVALID_ARGUMENT;
+    }
+    *solution_ptr = static_cast<cuOptSolution>(solution_and_stream_view.release());

878-903: ⚠️ Potential issue | 🟠 Major

Handle host-resident solutions in cuOptGetPrimalSolution.
Remote solves can return host data; the current code always reads device vectors and will throw for host-only solutions.

🛠️ Suggested fix
   if (solution_and_stream_view->is_mip) {
     mip_solution_t<cuopt_int_t, cuopt_float_t>* mip_solution =
       static_cast<mip_solution_t<cuopt_int_t, cuopt_float_t>*>(
         solution_and_stream_view->mip_solution_ptr);
-    const rmm::device_uvector<cuopt_float_t>& solution_values = mip_solution->get_solution();
-    rmm::cuda_stream_view stream =
-      solution_and_stream_view->stream_view.value_or(rmm::cuda_stream_view{});
-    raft::copy(solution_values_ptr, solution_values.data(), solution_values.size(), stream);
-    stream.synchronize();
+    if (mip_solution->is_device_memory()) {
+      const auto& solution_values = mip_solution->get_solution();
+      rmm::cuda_stream_view stream =
+        solution_and_stream_view->stream_view.value_or(rmm::cuda_stream_view{});
+      raft::copy(solution_values_ptr, solution_values.data(), solution_values.size(), stream);
+      stream.synchronize();
+    } else {
+      const auto& solution_values = mip_solution->get_solution_host();
+      std::copy(solution_values.begin(), solution_values.end(), solution_values_ptr);
+    }
   } else {
     optimization_problem_solution_t<cuopt_int_t, cuopt_float_t>* optimization_problem_solution =
       static_cast<optimization_problem_solution_t<cuopt_int_t, cuopt_float_t>*>(
         solution_and_stream_view->lp_solution_ptr);
-    const rmm::device_uvector<cuopt_float_t>& solution_values =
-      optimization_problem_solution->get_primal_solution();
-    rmm::cuda_stream_view stream =
-      solution_and_stream_view->stream_view.value_or(rmm::cuda_stream_view{});
-    raft::copy(solution_values_ptr, solution_values.data(), solution_values.size(), stream);
-    stream.synchronize();
+    if (optimization_problem_solution->is_device_memory()) {
+      const auto& solution_values = optimization_problem_solution->get_primal_solution();
+      rmm::cuda_stream_view stream =
+        solution_and_stream_view->stream_view.value_or(rmm::cuda_stream_view{});
+      raft::copy(solution_values_ptr, solution_values.data(), solution_values.size(), stream);
+      stream.synchronize();
+    } else {
+      const auto& solution_values = optimization_problem_solution->get_primal_solution_host();
+      std::copy(solution_values.begin(), solution_values.end(), solution_values_ptr);
+    }
   }

981-999: ⚠️ Potential issue | 🟠 Major

Add host-path copies for dual solution and reduced costs.
These getters still assume device memory and will fail for remote/host solutions.

🛠️ Suggested fix
-    const rmm::device_uvector<cuopt_float_t>& dual_solution =
-      optimization_problem_solution->get_dual_solution();
-    rmm::cuda_stream_view stream =
-      solution_and_stream_view->stream_view.value_or(rmm::cuda_stream_view{});
-    raft::copy(dual_solution_ptr, dual_solution.data(), dual_solution.size(), stream);
-    stream.synchronize();
+    if (optimization_problem_solution->is_device_memory()) {
+      const auto& dual_solution = optimization_problem_solution->get_dual_solution();
+      rmm::cuda_stream_view stream =
+        solution_and_stream_view->stream_view.value_or(rmm::cuda_stream_view{});
+      raft::copy(dual_solution_ptr, dual_solution.data(), dual_solution.size(), stream);
+      stream.synchronize();
+    } else {
+      const auto& dual_solution = optimization_problem_solution->get_dual_solution_host();
+      std::copy(dual_solution.begin(), dual_solution.end(), dual_solution_ptr);
+    }
...
-    const rmm::device_uvector<cuopt_float_t>& reduced_cost =
-      optimization_problem_solution->get_reduced_cost();
-    rmm::cuda_stream_view stream =
-      solution_and_stream_view->stream_view.value_or(rmm::cuda_stream_view{});
-    raft::copy(reduced_cost_ptr, reduced_cost.data(), reduced_cost.size(), stream);
-    stream.synchronize();
+    if (optimization_problem_solution->is_device_memory()) {
+      const auto& reduced_cost = optimization_problem_solution->get_reduced_cost();
+      rmm::cuda_stream_view stream =
+        solution_and_stream_view->stream_view.value_or(rmm::cuda_stream_view{});
+      raft::copy(reduced_cost_ptr, reduced_cost.data(), reduced_cost.size(), stream);
+      stream.synchronize();
+    } else {
+      const auto& reduced_cost = optimization_problem_solution->get_reduced_cost_host();
+      std::copy(reduced_cost.begin(), reduced_cost.end(), reduced_cost_ptr);
+    }

Also applies to: 1021-1039

cpp/src/linear_programming/solver_solution.cu (1)

191-265: ⚠️ Potential issue | 🟠 Major

Release device buffers when copy_from switches to host data.
When other.is_device_memory_ is false, the existing device buffers remain allocated, which can retain large GPU memory unnecessarily.

🛠️ Suggested fix
   } else {
     // Copy CPU data
+    // Release device buffers when switching to host-backed data
+    primal_solution_.reset();
+    dual_solution_.reset();
+    reduced_cost_.reset();
     if (!primal_solution_host_) { primal_solution_host_ = std::make_unique<std::vector<f_t>>(); }
     if (!dual_solution_host_) { dual_solution_host_ = std::make_unique<std::vector<f_t>>(); }
     if (!reduced_cost_host_) { reduced_cost_host_ = std::make_unique<std::vector<f_t>>(); }
As per coding guidelines: Track GPU device memory allocations and deallocations to prevent memory leaks; ensure cudaMalloc/cudaFree balance and cleanup of streams/events.
🤖 Fix all issues with AI agents
In `@cpp/libmps_parser/src/data_model_view.cpp`:
- Around line 351-392: The code in data_model_view_t::get_problem_category()
(and other span-returning getters using variable_types_.data() / spans)
dereferences host spans without checking the is_device_memory_ flag; either
guard these accesses by checking is_device_memory_ and performing a device->host
copy into a host-local span before reading, or remove the unused flag and
document that spans must be host-resident; specifically update
data_model_view_t::get_problem_category(), all span-returning getters, and any
callers that assume host memory (e.g., remove reliance on
set_is_device_memory(false) or add an explicit device-to-host copy helper
invoked when is_device_memory_ is true) so accesses to variable_types_,
column_types_, etc. never read device memory directly.

In `@cpp/src/linear_programming/solve.cu`:
- Around line 1299-1306: In solve_lp, remove the unreachable duplicate
remote_config.has_value() branch (the block that logs CUOPT_REMOTE_HOST/PORT and
calls solve_lp_remote) since remote_config was already checked earlier and
returned; specifically delete the second if (remote_config.has_value()) {
CUOPT_LOG_INFO(...); return solve_lp_remote(*remote_config, view, settings); }
block so the function flow no longer contains dead code referencing
remote_config, solve_lp_remote, view, and settings.

In `@cpp/src/mip/solve.cu`:
- Around line 338-342: The null handle_ptr check must be moved so it executes
before either data path; ensure you validate handle_ptr (the pointer used by
data_model_view_to_optimization_problem) before calling
data_model_view_to_optimization_problem so both the device and CPU branches are
protected; specifically, place the existing handle_ptr == nullptr check above
the device memory branch (i.e., before any calls into
data_model_view_to_optimization_problem/optimization_problem_t constructor),
keep the same error logging and return of mip_solution_t with
cuopt::logic_error, and avoid duplicating checks—one early guard covers both
paths.

In `@cpp/tests/linear_programming/c_api_tests/c_api_tests.cpp`:
- Around line 177-184: Replace the exact equality check on the floating-point
objective offset with an epsilon comparison: instead of comparing
orig->get_objective_offset() == rerd->get_objective_offset(), compute the
absolute difference and compare it to a small tolerance (e.g.,
std::numeric_limits<double>::epsilon() * scale or a fixed small value) so the
result uses fabs(orig->get_objective_offset() - rerd->get_objective_offset()) <=
tol; keep the integer checks for orig->get_n_constraints(),
orig->get_n_variables(), orig->get_nnz() unchanged and use these symbol names to
locate the change.

In `@python/cuopt/cuopt/__init__.py`:
- Around line 29-33: The __dir__() function currently returns __all__ +
_submodules which duplicates submodule names because __all__ already unpacks
_submodules; change __dir__ to return a deduplicated list (preferably simply
return __all__) or otherwise return an order-preserving deduplicated sequence
(e.g., using dict.fromkeys) so names from __all__ and _submodules aren’t
repeated; update the __dir__ definition accordingly (referencing __dir__,
__all__, and _submodules).

In `@python/cuopt/cuopt/tests/linear_programming/test_memory_model.py`:
- Around line 167-168: The test sets variable types using an integer array which
prevents is_mip() from recognizing MIP variables; update the test to provide
string-encoded type codes (e.g., use a one-byte string array) when calling
data_model_obj.set_variable_types so the solver's is_mip() (solver.py) will
detect the "I" code; replace the np.array([1]) usage with a string bytes array
like np.array(["I"], dtype="S1") (or equivalent single-byte string encoding) so
the test exercises the MIP path.
🧹 Nitpick comments (14)
cpp/tests/linear_programming/unit_tests/lp_solution_memory_test.cu (2)

22-39: Clarify test naming and incomplete guard implementation.

The test name host_only_accessors_need_coderabbit_patch and the commented-out EXPECT_THROW assertions suggest that device-accessor guards for host-only solutions are not yet implemented. The test comments reference a "coderabbit_changes.patch" which is an unusual convention.

Consider:

  1. Renaming tests to reflect current behavior (e.g., host_solution_basic_accessors)
  2. Creating a tracking issue for implementing the accessor guards
  3. Using // TODO(issue#123): Enable when guards are implemented instead of referencing a patch file

70-104: Consider adding stream synchronization before accessor validation.

The test creates device vectors without explicit initialization values. While this is acceptable for testing accessor availability, you may want to add handle.sync_stream() before calling EXPECT_NO_THROW on device accessors to ensure any pending operations are complete.

                                                         &handle,
                                                         true);

+  handle.sync_stream();
   EXPECT_TRUE(solution.is_device_memory());
python/cuopt/cuopt/tests/linear_programming/test_memory_model.py (1)

187-250: Add infeasible/unbounded + free‑variable cases to memory‑model tests.
To align the new memory‑model suite with test requirements, consider adding a minimal infeasible LP, an unbounded LP, and a free‑variable case (host‑memory path).

As per coding guidelines: “Write tests validating numerical correctness of optimization results (not just 'runs without error'); test degenerate cases (infeasible, unbounded, empty, singleton problems)” and “Test with free variables, singleton problems, and extreme problem dimensions near resource limits to validate edge case handling.”

cpp/tests/mip/mip_solution_memory_test.cu (1)

25-47: Remove patch-specific naming and enable guard behavior validation in tests.

The guards are implemented: EXE_CUOPT_EXPECTS checks on get_solution() and get_solution_host() verify pointer validity. The test names ("need_coderabbit_patch") and commented-out EXPECT_THROW assertions are misleading and should be removed or the assertions enabled. Either rename the tests to reflect their current behavior or uncomment the EXPECT_THROW for get_solution() on host-only solutions to validate that guards properly throw logic_error.

Suggested fix
-TEST(mip_solution_memory, host_only_accessors_need_coderabbit_patch)
+TEST(mip_solution_memory, host_only_accessors)
 {
-  // This test validates that EXE_CUOPT_EXPECTS guards are in place
-  // Guards are added in coderabbit_changes.patch
+  // Verify host-only solution behavior
   std::vector<double> solution{0.0};
   std::vector<std::string> var_names{"x0"};
   solver_stats_t<int, double> stats{};

   mip_solution_t<int, double> mip_solution(std::move(solution),
                                            std::move(var_names),
                                            0.0,
                                            0.0,
                                            mip_termination_status_t::Optimal,
                                            0.0,
                                            0.0,
                                            0.0,
                                            stats);

   EXPECT_FALSE(mip_solution.is_device_memory());
-  // After applying CodeRabbit patch, this should throw
-  // EXPECT_THROW(mip_solution.get_solution(), cuopt::logic_error);
+  EXPECT_THROW(mip_solution.get_solution(), cuopt::logic_error);
   EXPECT_NO_THROW(mip_solution.get_solution_host());
 }
cpp/tests/linear_programming/unit_tests/memory_model_infrastructure_test.cu (1)

287-309: Test uses host pointers with is_device_memory=true flag — intentional but potentially confusing.

The comment on line 292 notes this is "simulated with host pointers for test", but passing host pointers while marking is_device_memory(true) could cause undefined behavior if the conversion function actually attempts GPU memory operations. This test only validates that EXPECT_NO_THROW succeeds, but doesn't verify the resulting optimization problem's correctness.

Consider adding a comment clarifying that this test relies on the conversion function not dereferencing the pointers during view-to-optimization_problem conversion, or using actual device memory allocations for a more realistic test.

cpp/libmps_parser/CMakeLists.txt (2)

98-100: Static library missing compile options.

The shared library mps_parser has target_compile_options applied (line 98-100), but mps_parser_static does not receive the same treatment. This could lead to inconsistent warning/error behavior between the two builds.

♻️ Proposed fix to add compile options to static library
 target_compile_options(mps_parser
   PRIVATE "$<$<COMPILE_LANGUAGE:CXX>:${MPS_PARSER_CXX_FLAGS}>"
 )
+
+target_compile_options(mps_parser_static
+  PRIVATE "$<$<COMPILE_LANGUAGE:CXX>:${MPS_PARSER_CXX_FLAGS}>"
+)

Also applies to: 128-135


137-143: Static library missing BZip2/ZLIB include directories.

If MPS_PARSER_WITH_BZIP2 or MPS_PARSER_WITH_ZLIB are enabled, only the shared library receives the corresponding include directories. The static library should receive them as well.

♻️ Proposed fix to add compression library includes to static target
 if(MPS_PARSER_WITH_BZIP2)
     target_include_directories(mps_parser PRIVATE BZip2::BZip2)
+    target_include_directories(mps_parser_static PRIVATE BZip2::BZip2)
 endif(MPS_PARSER_WITH_BZIP2)

 if(MPS_PARSER_WITH_ZLIB)
     target_include_directories(mps_parser PRIVATE ZLIB::ZLIB)
+    target_include_directories(mps_parser_static PRIVATE ZLIB::ZLIB)
 endif(MPS_PARSER_WITH_ZLIB)
cpp/src/mip/solve.cu (1)

331-345: Consider consolidating duplicate conversion calls.

Lines 333 and 343 both call data_model_view_to_optimization_problem(handle_ptr, view). The only difference is the null-check guard for CPU data. Consider restructuring to avoid duplication:

♻️ Proposed refactor to consolidate conversion logic
-  if (view.is_device_memory()) {
-    // Local solve: data already on GPU - convert view to optimization_problem_t and solve
-    auto op_problem = data_model_view_to_optimization_problem(handle_ptr, view);
-    return solve_mip(op_problem, settings);
-  }
-
   // Local solve with CPU data: copy to GPU and solve
-  if (handle_ptr == nullptr) {
+  if (!view.is_device_memory() && handle_ptr == nullptr) {
     CUOPT_LOG_ERROR("[solve_mip] Local solve requested but handle_ptr is null.");
     return mip_solution_t<i_t, f_t>(
       cuopt::logic_error("No CUDA handle for CPU->GPU copy", cuopt::error_type_t::RuntimeError));
   }
+
   auto op_problem = data_model_view_to_optimization_problem(handle_ptr, view);
   return solve_mip(op_problem, settings);
 }
cpp/libmps_parser/include/mps_parser/data_model_view.hpp (1)

450-454: Document that get_problem_category() reflects the variable types at first call.

The lazy-cached problem_category_ uses std::call_once for thread-safe initialization, reading variable_types_ to compute the category. While the documented API indicates set_variable_types() is called before solving (during initialization), explicitly documenting that get_problem_category() reflects the state at first call would clarify the intended usage pattern and prevent potential misuse where variable types are modified after category computation.

cpp/include/cuopt/linear_programming/mip/solver_solution.hpp (1)

111-116: Document precondition for host accessors.

The get_solution_host() methods document "Only valid when is_device_memory() returns false", but there's no runtime enforcement. Consider adding a debug assertion to catch misuse early:

cuopt_assert(!is_device_memory_, "get_solution_host() called on device-memory solution");

This would help catch programming errors during development.

cpp/src/linear_programming/utilities/cython_solve.cu (1)

208-214: Consider a more explicit warm-start presence check.

The warm-start detection relies on checking if last_restart_duality_gap_dual_solution_.data() != nullptr. While functional, a dedicated has_warm_start_data() method would be clearer and less brittle.

// Current: relies on internal pointer state
if (!is_mip && solver_settings->get_pdlp_warm_start_data_view()
                   .last_restart_duality_gap_dual_solution_.data() != nullptr) {

This is minor since the current approach works, but consider adding a helper method for clarity in future iterations.

cpp/src/linear_programming/optimization_problem_conversions.cu (3)

61-76: Clarify cudaPointerGetAttributes error handling.

The error handling for cudaPointerGetAttributes is functionally correct but could be clearer. The pattern handles:

  1. Device memory: copy D2H
  2. Host memory: direct copy
  3. Unregistered memory (returns cudaErrorInvalidValue): treated as host memory

Consider adding a brief comment explaining why cudaErrorInvalidValue is acceptable:

     } else {
       // Source is on host (or unregistered) - direct copy
       if (err != cudaSuccess) { cudaGetLastError(); }  // Clear cudaPointerGetAttributes error
+      // cudaErrorInvalidValue is expected for unregistered host memory - treat as host
       if (err != cudaSuccess && err != cudaErrorInvalidValue) { RAFT_CUDA_TRY(err); }
       std::memcpy(host_var_types.data(), var_types.data(), var_types.size() * sizeof(char));
     }

108-154: Consider extracting memory-aware copy helper.

The cudaPointerGetAttributes + conditional copy pattern is duplicated between variable types (lines 61-76) and quadratic objective (lines 114-146). Consider extracting a helper template:

template <typename T>
void copy_to_host(std::vector<T>& dest, const T* src, size_t count);

This would reduce duplication and centralize the error handling logic. However, this is a nice-to-have refactor that can be deferred.


241-335: Good non-owning view creation with correct memory semantics.

The function correctly creates a non-owning view pointing to mps_data_model's data and sets is_device_memory(false).

Important lifetime consideration: The returned view holds raw pointers to the mps_data_model's internal storage. The view is only valid as long as the mps_data_model remains alive and unmodified. This is documented implicitly by "non-owning view" but consider adding explicit documentation:

/**
 * `@brief` Create a non-owning view from an MPS data model.
 * `@warning` The returned view holds pointers to mps_data_model's data.
 *          The view is invalid if mps_data_model is destroyed or modified.
 */

Comment on lines 338 to 342
if (handle_ptr == nullptr) {
CUOPT_LOG_ERROR("[solve_mip] Local solve requested but handle_ptr is null.");
return mip_solution_t<i_t, f_t>(
cuopt::logic_error("No CUDA handle for CPU->GPU copy", cuopt::error_type_t::RuntimeError));
}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🔴 Critical

🧩 Analysis chain

🏁 Script executed:

# First, examine the context around lines 338-342 in solve.cu
cat -n cpp/src/mip/solve.cu | sed -n '330,350p'

Repository: NVIDIA/cuopt

Length of output: 1199


🏁 Script executed:

# Find the implementation of data_model_view_to_optimization_problem
find . -type f \( -name "*.cu" -o -name "*.cpp" -o -name "*.cuh" -o -name "*.hpp" \) -exec grep -l "data_model_view_to_optimization_problem" {} \;

Repository: NVIDIA/cuopt

Length of output: 390


🏁 Script executed:

# Examine the implementation of data_model_view_to_optimization_problem
cat -n cpp/src/linear_programming/optimization_problem_conversions.cu | head -150

Repository: NVIDIA/cuopt

Length of output: 8214


🏁 Script executed:

# Search for the function signature and its use of handle_ptr
rg -n "data_model_view_to_optimization_problem" cpp/src/linear_programming/optimization_problem_conversions.cu -B 5 -A 40 | head -100

Repository: NVIDIA/cuopt

Length of output: 3895


🏁 Script executed:

# Check the optimization_problem_t constructor to see if it uses handle_ptr
rg -n "optimization_problem_t.*constructor\|explicit optimization_problem_t" cpp/src/linear_programming/ -B 2 -A 15 | head -80

Repository: NVIDIA/cuopt

Length of output: 38


🏁 Script executed:

# Look for the constructor definition
fd -e hpp -e h cpp/src/linear_programming/ -x grep -l "optimization_problem_t"

Repository: NVIDIA/cuopt

Length of output: 469


🏁 Script executed:

# Find header file for optimization_problem_t
find cpp/include -name "*.hpp" -o -name "*.h" | xargs grep -l "class optimization_problem_t\|struct optimization_problem_t"

Repository: NVIDIA/cuopt

Length of output: 117


🏁 Script executed:

# Search for optimization_problem_t constructor in all header files
fd . cpp/include -name "*.hpp" -o -name "*.h" | xargs grep -A 20 "optimization_problem_t.*handle_ptr"

Repository: NVIDIA/cuopt

Length of output: 288


🏁 Script executed:

# Read the optimization_problem.hpp file to find constructor
cat cpp/include/cuopt/linear_programming/optimization_problem.hpp | head -200

Repository: NVIDIA/cuopt

Length of output: 7595


🏁 Script executed:

# Search for constructor definition with handle_ptr
rg -n "optimization_problem_t.*handle_ptr\|optimization_problem_t\(" cpp/include/cuopt/linear_programming/optimization_problem.hpp -A 10 | head -60

Repository: NVIDIA/cuopt

Length of output: 38


🏁 Script executed:

# Find the full constructor implementation
rg -n "optimization_problem_t\(.*handle" cpp/include/cuopt/linear_programming/optimization_problem.hpp -A 5

Repository: NVIDIA/cuopt

Length of output: 297


🏁 Script executed:

# Look at the implementation in the .cu file
rg -n "optimization_problem_t<i_t, f_t>::optimization_problem_t.*handle_ptr" cpp/src/linear_programming/ -A 20

Repository: NVIDIA/cuopt

Length of output: 1924


Move the null handle check before the device memory path.

Both the device (line 333) and CPU (line 343) data paths call data_model_view_to_optimization_problem, which creates an optimization_problem_t that immediately dereferences handle_ptr in its constructor (line 41 of optimization_problem.cu). The current null check at line 338 only guards the CPU path; the device path executes without validation and will crash with a null pointer dereference in the constructor. Move the null check before line 331 to protect both paths.

🤖 Prompt for AI Agents
In `@cpp/src/mip/solve.cu` around lines 338 - 342, The null handle_ptr check must
be moved so it executes before either data path; ensure you validate handle_ptr
(the pointer used by data_model_view_to_optimization_problem) before calling
data_model_view_to_optimization_problem so both the device and CPU branches are
protected; specifically, place the existing handle_ptr == nullptr check above
the device memory branch (i.e., before any calls into
data_model_view_to_optimization_problem/optimization_problem_t constructor),
keep the same error logging and return of mip_solution_t with
cuopt::logic_error, and avoid duplicating checks—one early guard covers both
paths.

Comment on lines 177 to 184
// Compare key problem attributes since mps_data_t doesn't have is_equivalent()
auto* orig = original_problem_wrapper->op_problem;
auto* rerd = reread_problem_wrapper->op_problem;

result =
original_problem_wrapper->op_problem->is_equivalent(*reread_problem_wrapper->op_problem);
(orig->get_n_constraints() == rerd->get_n_constraints() &&
orig->get_n_variables() == rerd->get_n_variables() && orig->get_nnz() == rerd->get_nnz() &&
orig->get_objective_offset() == rerd->get_objective_offset());
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟡 Minor

Use epsilon comparison for floating-point objective_offset.

Line 184 uses exact equality (==) for get_objective_offset(), which returns a floating-point value. MPS serialization/deserialization could introduce minor precision drift, causing spurious test failures.

Additionally, this comparison validates problem dimensions but not the actual data content (constraint coefficients, variable bounds, objective coefficients). Consider whether a more comprehensive check is needed for true roundtrip validation.

Proposed fix for floating-point comparison
+#include <cmath>
+
+// Helper for approximate FP comparison
+static bool approx_equal(double a, double b, double eps = 1e-12) {
+  return std::fabs(a - b) <= eps * std::max(1.0, std::max(std::fabs(a), std::fabs(b)));
+}
+
 // In test_mps_roundtrip:
     result =
       (orig->get_n_constraints() == rerd->get_n_constraints() &&
        orig->get_n_variables() == rerd->get_n_variables() && orig->get_nnz() == rerd->get_nnz() &&
-       orig->get_objective_offset() == rerd->get_objective_offset());
+       approx_equal(orig->get_objective_offset(), rerd->get_objective_offset()));

As per coding guidelines: "use epsilon comparisons for floating-point equality checks."

🤖 Prompt for AI Agents
In `@cpp/tests/linear_programming/c_api_tests/c_api_tests.cpp` around lines 177 -
184, Replace the exact equality check on the floating-point objective offset
with an epsilon comparison: instead of comparing orig->get_objective_offset() ==
rerd->get_objective_offset(), compute the absolute difference and compare it to
a small tolerance (e.g., std::numeric_limits<double>::epsilon() * scale or a
fixed small value) so the result uses fabs(orig->get_objective_offset() -
rerd->get_objective_offset()) <= tol; keep the integer checks for
orig->get_n_constraints(), orig->get_n_variables(), orig->get_nnz() unchanged
and use these symbol names to locate the change.

Comment on lines 29 to 33
def __dir__():
return __all__ + _submodules


__all__ = ["__git_commit__", "__version__", "__version_major_minor__", *_submodules]
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟡 Minor

__dir__() returns duplicate entries for submodules.

__all__ already includes the submodules via *_submodules unpacking on line 33, so __dir__() returning __all__ + _submodules will list them twice in dir(cuopt) output.

🐛 Proposed fix
 def __dir__():
-    return __all__ + _submodules
+    return list(__all__)
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
def __dir__():
return __all__ + _submodules
__all__ = ["__git_commit__", "__version__", "__version_major_minor__", *_submodules]
def __dir__():
return list(__all__)
__all__ = ["__git_commit__", "__version__", "__version_major_minor__", *_submodules]
🤖 Prompt for AI Agents
In `@python/cuopt/cuopt/__init__.py` around lines 29 - 33, The __dir__() function
currently returns __all__ + _submodules which duplicates submodule names because
__all__ already unpacks _submodules; change __dir__ to return a deduplicated
list (preferably simply return __all__) or otherwise return an order-preserving
deduplicated sequence (e.g., using dict.fromkeys) so names from __all__ and
_submodules aren’t repeated; update the __dir__ definition accordingly
(referencing __dir__, __all__, and _submodules).

Comment on lines 167 to 168
var_types = np.array([1]) # Integer
data_model_obj.set_variable_types(var_types)
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟡 Minor

🧩 Analysis chain

🏁 Script executed:

cat -n python/cuopt/cuopt/tests/linear_programming/test_memory_model.py | sed -n '160,175p'

Repository: NVIDIA/cuopt

Length of output: 618


🏁 Script executed:

# Find where variable type codes are defined
rg -n "set_variable_types" -g '*.py' -g '*.pyx' python/cuopt | head -20

Repository: NVIDIA/cuopt

Length of output: 1001


🏁 Script executed:

# Find variable type constant definitions
rg -n "BINARY|INTEGER|CONTINUOUS" -g '*.py' python/cuopt | grep -E "(^[^:]+:\s*(BINARY|INTEGER|CONTINUOUS)\s*=|def.*variable_type)" | head -30

Repository: NVIDIA/cuopt

Length of output: 38


🏁 Script executed:

# Check what dtype np.array([1]) creates and look for examples in the codebase
rg -n "np\.array\(\[" -g '*.py' python/cuopt/tests | grep -i "var_type\|variable_type" -A 2 -B 2 | head -40

Repository: NVIDIA/cuopt

Length of output: 114


🏁 Script executed:

# Find the actual variable type values used in tests
rg -n "variable_types\s*=" -g '*.py' python/cuopt/tests -A 1 | head -50

Repository: NVIDIA/cuopt

Length of output: 114


🏁 Script executed:

# Look at the set_variable_types implementation
sed -n '364,390p' python/cuopt/cuopt/linear_programming/data_model/data_model.py

Repository: NVIDIA/cuopt

Length of output: 958


🏁 Script executed:

# Check the wrapper implementation
sed -n '133,160p' python/cuopt/cuopt/linear_programming/data_model/data_model_wrapper.pyx

Repository: NVIDIA/cuopt

Length of output: 827


🏁 Script executed:

# Find variable type constants
rg -n "VarType|VariableType|var_type" -g '*.py' -g '*.pyx' python/cuopt/cuopt/linear_programming --max-count=100 | head -50

Repository: NVIDIA/cuopt

Length of output: 2773


🏁 Script executed:

# Look for where variable types are actually used/parsed
rg -n "dtype.*S1|dtype.*str|int.*1.*Integer|VarType\s*=" -g '*.py' -g '*.pyx' python/cuopt | head -30

Repository: NVIDIA/cuopt

Length of output: 1372


🏁 Script executed:

# Check test cases for other MIP tests to see how they use variable types
rg -n "set_variable_types" -g '*.py' python/cuopt --context=3 | head -80

Repository: NVIDIA/cuopt

Length of output: 3546


🏁 Script executed:

sed -n '84,96p' python/cuopt/cuopt/linear_programming/solver/solver.py

Repository: NVIDIA/cuopt

Length of output: 581


🏁 Script executed:

# Check if there are any other tests using np.array([1]) for variable types
rg -n "np\.array\(\[1\]\)" -g '*.py' python/cuopt/tests

Repository: NVIDIA/cuopt

Length of output: 114


Fix variable type encoding in test to use explicit string codes.
np.array([1]) creates an integer array, not a string array. The is_mip() function (solver.py:84-96) checks for the string "I" or bytes b"I", so integer 1 is not recognized as an integer variable type. This prevents the test from exercising the MIP path. Use np.array(["I"], dtype="S1") to match the documented requirement (data_model.py:364) and patterns used throughout the codebase.

Proposed fix
-        var_types = np.array([1])  # Integer
+        var_types = np.array(["I"], dtype="S1")  # Integer
🤖 Prompt for AI Agents
In `@python/cuopt/cuopt/tests/linear_programming/test_memory_model.py` around
lines 167 - 168, The test sets variable types using an integer array which
prevents is_mip() from recognizing MIP variables; update the test to provide
string-encoded type codes (e.g., use a one-byte string array) when calling
data_model_obj.set_variable_types so the solver's is_mip() (solver.py) will
detect the "I" code; replace the np.array([1]) usage with a string bytes array
like np.array(["I"], dtype="S1") (or equivalent single-byte string encoding) so
the test exercises the MIP path.

Copy link

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 3

Caution

Some comments are outside the diff and can’t be posted inline due to platform limitations.

⚠️ Outside diff range comments (4)
cpp/include/cuopt/linear_programming/utilities/callbacks_implems.hpp (1)

41-52: ⚠️ Potential issue | 🟡 Minor

Add null checks before Py_DECREF to prevent crashes on Python errors.

PyObject_CallMethod can return NULL if the Python call fails (e.g., method not found, exception raised). Calling Py_DECREF(NULL) causes undefined behavior. The same issue exists in set_solution.

🛡️ Proposed fix
   void get_solution(void* data, void* objective_value) override
   {
     PyObject* numba_matrix =
       data_on_device() ? get_numba_matrix(data, n_variables) : get_numpy_array(data, n_variables);
     PyObject* numpy_array =
       data_on_device() ? get_numba_matrix(objective_value, 1) : get_numpy_array(objective_value, 1);
+    if (numba_matrix == nullptr || numpy_array == nullptr) {
+      Py_XDECREF(numba_matrix);
+      Py_XDECREF(numpy_array);
+      return;
+    }
     PyObject* res =
       PyObject_CallMethod(this->pyCallbackClass, "get_solution", "(OO)", numba_matrix, numpy_array);
     Py_DECREF(numba_matrix);
     Py_DECREF(numpy_array);
-    Py_DECREF(res);
+    Py_XDECREF(res);
   }
cpp/libmps_parser/CMakeLists.txt (1)

70-136: ⚠️ Potential issue | 🟠 Major

mps_parser_static misses C++ standard and compile options.

The shared target sets CXX_STANDARD and MPS_PARSER_CXX_FLAGS, but the static target does not. This can break static builds if the sources rely on C++20 features or warning flags. Consider applying the same properties (and optional include/link settings) to mps_parser_static.

🔧 Proposed fix (keep targets consistent)
 add_library(mps_parser SHARED ${MPS_PARSER_SOURCES})
 
 # Static library for linking into libcuopt
 add_library(mps_parser_static STATIC ${MPS_PARSER_SOURCES})
 
 set_target_properties(mps_parser
@@
   CXX_SCAN_FOR_MODULES OFF
 )
+
+set_target_properties(mps_parser_static
+  PROPERTIES
+  CXX_STANDARD 20
+  CXX_STANDARD_REQUIRED ON
+  INTERFACE_POSITION_INDEPENDENT_CODE ON
+  CXX_SCAN_FOR_MODULES OFF
+)
@@
 target_compile_options(mps_parser
   PRIVATE "$<$<COMPILE_LANGUAGE:CXX>:${MPS_PARSER_CXX_FLAGS}>"
 )
+
+target_compile_options(mps_parser_static
+  PRIVATE "$<$<COMPILE_LANGUAGE:CXX>:${MPS_PARSER_CXX_FLAGS}>"
+)
cpp/src/linear_programming/cuopt_c.cpp (1)

878-903: ⚠️ Potential issue | 🟠 Major

Handle host‑memory solutions in C API getters.

Remote solves can return host-only solutions, but the getters always read device buffers. This will throw or return invalid data when is_device_memory() is false. Add a host branch (for MIP and LP) and use the new host accessors.

🐛 Proposed fix (example for cuOptGetPrimalSolution)
   if (solution_and_stream_view->is_mip) {
     mip_solution_t<cuopt_int_t, cuopt_float_t>* mip_solution =
       static_cast<mip_solution_t<cuopt_int_t, cuopt_float_t>*>(
         solution_and_stream_view->mip_solution_ptr);
-    const rmm::device_uvector<cuopt_float_t>& solution_values = mip_solution->get_solution();
-    rmm::cuda_stream_view stream =
-      solution_and_stream_view->stream_view.value_or(rmm::cuda_stream_view{});
-    raft::copy(solution_values_ptr, solution_values.data(), solution_values.size(), stream);
-    stream.synchronize();
+    if (mip_solution->is_device_memory()) {
+      const rmm::device_uvector<cuopt_float_t>& solution_values = mip_solution->get_solution();
+      rmm::cuda_stream_view stream =
+        solution_and_stream_view->stream_view.value_or(rmm::cuda_stream_view{});
+      raft::copy(solution_values_ptr, solution_values.data(), solution_values.size(), stream);
+      stream.synchronize();
+    } else {
+      const auto& host_solution = mip_solution->get_solution_host();
+      std::copy(host_solution.begin(), host_solution.end(), solution_values_ptr);
+    }
   } else {
     optimization_problem_solution_t<cuopt_int_t, cuopt_float_t>* optimization_problem_solution =
       static_cast<optimization_problem_solution_t<cuopt_int_t, cuopt_float_t>*>(
         solution_and_stream_view->lp_solution_ptr);
-    const rmm::device_uvector<cuopt_float_t>& solution_values =
-      optimization_problem_solution->get_primal_solution();
-    rmm::cuda_stream_view stream =
-      solution_and_stream_view->stream_view.value_or(rmm::cuda_stream_view{});
-    raft::copy(solution_values_ptr, solution_values.data(), solution_values.size(), stream);
-    stream.synchronize();
+    if (optimization_problem_solution->is_device_memory()) {
+      const rmm::device_uvector<cuopt_float_t>& solution_values =
+        optimization_problem_solution->get_primal_solution();
+      rmm::cuda_stream_view stream =
+        solution_and_stream_view->stream_view.value_or(rmm::cuda_stream_view{});
+      raft::copy(solution_values_ptr, solution_values.data(), solution_values.size(), stream);
+      stream.synchronize();
+    } else {
+      const auto& host_solution = optimization_problem_solution->get_primal_solution_host();
+      std::copy(host_solution.begin(), host_solution.end(), solution_values_ptr);
+    }
   }

Please mirror the same device/host branching in cuOptGetDualSolution and cuOptGetReducedCosts.

Also applies to: 981-999, 1021-1039

cpp/src/linear_programming/solver_solution.cu (1)

191-265: ⚠️ Potential issue | 🟠 Major

Clear stale buffers when switching memory domains in copy_from.
When copying from a different memory domain, the old buffers remain allocated and can be returned by getters, leading to stale data and wasted memory. Reset the inactive domain in each branch to preserve invariants.

🧹 Proposed fix to clear inactive-domain buffers
   if (other.is_device_memory_) {
     // Copy GPU data
@@
     if (other.reduced_cost_) {
       reduced_cost_->resize(other.reduced_cost_->size(), handle_ptr->get_stream());
       raft::copy(reduced_cost_->data(),
                  other.reduced_cost_->data(),
                  reduced_cost_->size(),
                  handle_ptr->get_stream());
     } else {
       reduced_cost_->resize(0, handle_ptr->get_stream());
     }
 
+    // Clear stale host buffers when switching to device memory
+    primal_solution_host_.reset();
+    dual_solution_host_.reset();
+    reduced_cost_host_.reset();
+
     handle_ptr->sync_stream();
   } else {
     // Copy CPU data
@@
     if (other.reduced_cost_host_) {
       *reduced_cost_host_ = *other.reduced_cost_host_;
     } else {
       reduced_cost_host_->clear();
     }
+
+    // Clear stale device buffers when switching to host memory
+    primal_solution_.reset();
+    dual_solution_.reset();
+    reduced_cost_.reset();
   }
🤖 Fix all issues with AI agents
In `@cpp/include/cuopt/linear_programming/mip/solver_solution.hpp`:
- Around line 157-169: The to_host(rmm::cuda_stream_view) implementation must
perform an asynchronous device-to-host copy on the provided stream and check
CUDA errors without synchronizing; update mip_solution_t<...>::to_host to call
rmm::device_uvector::copy_async (or cudaMemcpyAsync) into the host buffer when
is_device_memory() is true, pass stream_view.stream() for the stream, wrap the
copy call with CUDA_CHECK (or the project’s CUDA_CHECK macro) to validate the
operation, and remove any cudaDeviceSynchronize or stream synchronization calls
so the path remains async; ensure after scheduling the copy you update internal
state so get_solution_host() refers to the host buffer once the copy is
enqueued.

In `@cpp/include/cuopt/linear_programming/utilities/remote_solve.hpp`:
- Around line 71-110: Add a precondition check in the remote stub(s) to enforce
that input data is host-resident: in solve_lp_remote(...) (and the other remote
overload) assert or throw if the provided
cuopt::mps_parser::data_model_view_t<i_t,f_t>& view is not on the host (use the
view's host-residency accessor, e.g., view.is_host_resident() or
view.is_on_host(), or equivalent), so the stub fails fast instead of silently
proceeding; place this check at the top of the functions (before computing
n_rows/n_cols) and keep behavior consistent (assert for debug builds or throw
std::invalid_argument/std::runtime_error for public API).

In `@cpp/tests/linear_programming/unit_tests/memory_model_infrastructure_test.cu`:
- Around line 36-65: The tests mutate process-global CUOPT_REMOTE_HOST/PORT in
RemoteSolveConfigTest::SetUp/ TearDown which can race when tests run in
parallel; fix by introducing a global test-scope mutex (e.g., a static
std::mutex or a test helper ScopedEnvLock) and acquire it for the entire
duration of each test instance in SetUp and release in TearDown (or use RAII
ScopedEnvLock constructed in SetUp and destroyed in TearDown); ensure the lock
covers both the unsetenv/setenv calls and any GPU/global-state touches so
environment and global state are serialized across tests.
🧹 Nitpick comments (5)
cpp/tests/mip/mip_solution_memory_test.cu (1)

101-117: Consider adding edge case tests for empty solutions.

The termination-status-only and error constructors are well tested. For more comprehensive coverage per coding guidelines, consider adding tests for:

  • Empty variable names vector
  • Zero-variable solutions
  • Degenerate termination statuses

These could help validate edge case handling in the solution memory paths.

cpp/tests/linear_programming/unit_tests/memory_model_infrastructure_test.cu (2)

218-331: Exercise a real device‑pointer path (or rename the test).

gpu_view_conversion marks device memory but uses host pointers, so it doesn’t validate the real GPU copy path. Consider allocating device buffers (e.g., rmm::device_uvector) when GPU tests are available, or rename to clarify it’s a “GPU‑flag only” test.

Based on learnings: Write tests validating numerical correctness of optimization results (not just 'runs without error'); test degenerate cases (infeasible, unbounded, empty, singleton problems).


336-387: Strengthen stub assertions with value checks (zeros).

These tests assert sizes and status only. Add value checks for the returned vectors (all zeros) to confirm numerical content, not just shape.

Based on learnings: Write tests validating numerical correctness of optimization results (not just 'runs without error'); test degenerate cases (infeasible, unbounded, empty, singleton problems).

✅ Example enhancement
   EXPECT_FALSE(solution.is_device_memory());
   EXPECT_EQ(solution.get_termination_status(), pdlp_termination_status_t::Optimal);
   EXPECT_EQ(solution.get_primal_solution_host().size(), 1);
+  EXPECT_EQ(solution.get_primal_solution_host(), std::vector<double>({0.0}));
   EXPECT_NO_THROW(solution.get_primal_solution_host());
   EXPECT_NO_THROW(solution.get_dual_solution_host());
cpp/include/cuopt/linear_programming/utilities/remote_solve.hpp (1)

40-56: Consider exception‑free port parsing with std::from_chars.

This avoids exceptions in headers and is faster/locale‑independent.

♻️ Suggested change
+#include <charconv>
 ...
   if (host != nullptr && port != nullptr && host[0] != '\0' && port[0] != '\0') {
-    try {
-      int port_num = std::stoi(port);
-      if (port_num < 1 || port_num > 65535) { return std::nullopt; }
-      return remote_solve_config_t{std::string(host), port_num};
-    } catch (...) {
-      // Invalid port number, fall back to local solve
-      return std::nullopt;
-    }
+    int port_num = 0;
+    auto [ptr, ec] = std::from_chars(port, port + std::strlen(port), port_num);
+    if (ec != std::errc{} || ptr == port || *ptr != '\0') { return std::nullopt; }
+    if (port_num < 1 || port_num > 65535) { return std::nullopt; }
+    return remote_solve_config_t{std::string(host), port_num};
   }
cpp/src/linear_programming/solver_solution.cu (1)

733-782: Consider consolidating the repeated host-copy logic.
The device→host copy blocks are repeated in write_to_file, write_to_sol_file, and to_host. Extracting a shared helper would reduce duplication and future maintenance drift.

Based on learnings: Refactor code duplication in solver components (3+ occurrences) into shared utilities; for GPU kernels, use templated device functions to avoid duplication.

Comment on lines 157 to 169
/**
* @brief Copy solution data from GPU to CPU memory.
*
* After calling this method, is_device_memory() will return false and
* the solution can be accessed via get_solution_host().
* This is useful for remote solve scenarios where serialization requires
* CPU-accessible data.
*
* If the solution is already in CPU memory, this is a no-op.
*
* @param stream_view The CUDA stream to use for the copy
*/
void to_host(rmm::cuda_stream_view stream_view);
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟠 Major

Ensure to_host uses CUDA_CHECK and async copy on the provided stream.

This path will likely call cudaMemcpyAsync/rmm::device_uvector::copy_async; please confirm CUDA errors are checked and avoid cudaDeviceSynchronize in hot paths.

As per coding guidelines: Every CUDA kernel launch and memory operation must have error checking with CUDA_CHECK or equivalent verification.

#!/bin/bash
# Inspect to_host implementation for CUDA_CHECK usage and sync patterns.
rg -n "mip_solution_t<.*>::to_host\\(" -C3
🤖 Prompt for AI Agents
In `@cpp/include/cuopt/linear_programming/mip/solver_solution.hpp` around lines
157 - 169, The to_host(rmm::cuda_stream_view) implementation must perform an
asynchronous device-to-host copy on the provided stream and check CUDA errors
without synchronizing; update mip_solution_t<...>::to_host to call
rmm::device_uvector::copy_async (or cudaMemcpyAsync) into the host buffer when
is_device_memory() is true, pass stream_view.stream() for the stream, wrap the
copy call with CUDA_CHECK (or the project’s CUDA_CHECK macro) to validate the
operation, and remove any cudaDeviceSynchronize or stream synchronization calls
so the path remains async; ensure after scheduling the copy you update internal
state so get_solution_host() refers to the host buffer once the copy is
enqueued.

Comment on lines 71 to 110
optimization_problem_solution_t<i_t, f_t> solve_lp_remote(
const remote_solve_config_t&,
const cuopt::mps_parser::data_model_view_t<i_t, f_t>& view,
const pdlp_solver_settings_t<i_t, f_t>&)
{
auto n_rows = view.get_constraint_matrix_offsets().size() > 0
? static_cast<i_t>(view.get_constraint_matrix_offsets().size()) - 1
: 0;
auto n_cols = static_cast<i_t>(view.get_objective_coefficients().size());

std::vector<f_t> primal_solution(static_cast<size_t>(n_cols), f_t{0});
std::vector<f_t> dual_solution(static_cast<size_t>(n_rows), f_t{0});
std::vector<f_t> reduced_cost(static_cast<size_t>(n_cols), f_t{0});

typename optimization_problem_solution_t<i_t, f_t>::additional_termination_information_t stats;
stats.number_of_steps_taken = 0;
stats.total_number_of_attempted_steps = 0;
stats.l2_primal_residual = f_t{0};
stats.l2_relative_primal_residual = f_t{0};
stats.l2_dual_residual = f_t{0};
stats.l2_relative_dual_residual = f_t{0};
stats.primal_objective = f_t{0};
stats.dual_objective = f_t{0};
stats.gap = f_t{0};
stats.relative_gap = f_t{0};
stats.max_primal_ray_infeasibility = f_t{0};
stats.primal_ray_linear_objective = f_t{0};
stats.max_dual_ray_infeasibility = f_t{0};
stats.dual_ray_linear_objective = f_t{0};
stats.solve_time = 0.0;
stats.solved_by_pdlp = false;
return optimization_problem_solution_t<i_t, f_t>(std::move(primal_solution),
std::move(dual_solution),
std::move(reduced_cost),
"",
{},
{},
stats,
pdlp_termination_status_t::Optimal);
}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟠 Major

Enforce host‑memory precondition in remote stubs.

Remote solve is defined to require host‑resident data; the stubs should assert that to prevent silent misuse.

🛑 Proposed guard
 optimization_problem_solution_t<i_t, f_t> solve_lp_remote(
   const remote_solve_config_t&,
   const cuopt::mps_parser::data_model_view_t<i_t, f_t>& view,
   const pdlp_solver_settings_t<i_t, f_t>&)
 {
+  cuopt_assert(!view.is_device_memory(), "Remote solve requires host memory view");
   auto n_rows = view.get_constraint_matrix_offsets().size() > 0
                   ? static_cast<i_t>(view.get_constraint_matrix_offsets().size()) - 1
                   : 0;
@@
 mip_solution_t<i_t, f_t> solve_mip_remote(
   const remote_solve_config_t&,
   const cuopt::mps_parser::data_model_view_t<i_t, f_t>& view,
   const mip_solver_settings_t<i_t, f_t>&)
 {
+  cuopt_assert(!view.is_device_memory(), "Remote solve requires host memory view");
   auto n_cols = static_cast<i_t>(view.get_objective_coefficients().size());

Also applies to: 117-139

🤖 Prompt for AI Agents
In `@cpp/include/cuopt/linear_programming/utilities/remote_solve.hpp` around lines
71 - 110, Add a precondition check in the remote stub(s) to enforce that input
data is host-resident: in solve_lp_remote(...) (and the other remote overload)
assert or throw if the provided cuopt::mps_parser::data_model_view_t<i_t,f_t>&
view is not on the host (use the view's host-residency accessor, e.g.,
view.is_host_resident() or view.is_on_host(), or equivalent), so the stub fails
fast instead of silently proceeding; place this check at the top of the
functions (before computing n_rows/n_cols) and keep behavior consistent (assert
for debug builds or throw std::invalid_argument/std::runtime_error for public
API).

Comment on lines 36 to 65
class RemoteSolveConfigTest : public ::testing::Test {
protected:
void SetUp() override
{
// Save original environment variables
const char* host_env = std::getenv("CUOPT_REMOTE_HOST");
const char* port_env = std::getenv("CUOPT_REMOTE_PORT");
saved_host_ = host_env ? std::string(host_env) : std::string();
saved_port_ = port_env ? std::string(port_env) : std::string();
had_host_ = (host_env != nullptr);
had_port_ = (port_env != nullptr);

// Clean environment for test
unsetenv("CUOPT_REMOTE_HOST");
unsetenv("CUOPT_REMOTE_PORT");
}

void TearDown() override
{
// Restore original environment variables
if (had_host_) {
setenv("CUOPT_REMOTE_HOST", saved_host_.c_str(), 1);
} else {
unsetenv("CUOPT_REMOTE_HOST");
}
if (had_port_) {
setenv("CUOPT_REMOTE_PORT", saved_port_.c_str(), 1);
} else {
unsetenv("CUOPT_REMOTE_PORT");
}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟡 Minor

Guard global env var mutations across tests.

CUOPT_REMOTE_* is process‑global; if tests run in parallel, SetUp/TearDown can interleave and cause flaky behavior. Consider holding a mutex for the full test scope.
Based on learnings: Ensure test isolation: prevent GPU state, cached memory, and global variables from leaking between test cases; verify each test independently initializes its environment.

🔒 Proposed fix: scoped env lock
+#include <mutex>
 ...
 namespace cuopt::linear_programming::test {
 
+namespace {
+std::mutex env_mutex;
+}
+
 class RemoteSolveConfigTest : public ::testing::Test {
  protected:
   void SetUp() override
   {
+    env_lock_ = std::unique_lock<std::mutex>(env_mutex);
     // Save original environment variables
     const char* host_env = std::getenv("CUOPT_REMOTE_HOST");
     const char* port_env = std::getenv("CUOPT_REMOTE_PORT");
@@
   void TearDown() override
   {
     // Restore original environment variables
     if (had_host_) {
       setenv("CUOPT_REMOTE_HOST", saved_host_.c_str(), 1);
     } else {
       unsetenv("CUOPT_REMOTE_HOST");
     }
@@
     if (had_port_) {
       setenv("CUOPT_REMOTE_PORT", saved_port_.c_str(), 1);
     } else {
       unsetenv("CUOPT_REMOTE_PORT");
     }
+    env_lock_.unlock();
   }
 
  private:
   std::string saved_host_;
   std::string saved_port_;
   bool had_host_ = false;
   bool had_port_ = false;
+  std::unique_lock<std::mutex> env_lock_;
 };
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
class RemoteSolveConfigTest : public ::testing::Test {
protected:
void SetUp() override
{
// Save original environment variables
const char* host_env = std::getenv("CUOPT_REMOTE_HOST");
const char* port_env = std::getenv("CUOPT_REMOTE_PORT");
saved_host_ = host_env ? std::string(host_env) : std::string();
saved_port_ = port_env ? std::string(port_env) : std::string();
had_host_ = (host_env != nullptr);
had_port_ = (port_env != nullptr);
// Clean environment for test
unsetenv("CUOPT_REMOTE_HOST");
unsetenv("CUOPT_REMOTE_PORT");
}
void TearDown() override
{
// Restore original environment variables
if (had_host_) {
setenv("CUOPT_REMOTE_HOST", saved_host_.c_str(), 1);
} else {
unsetenv("CUOPT_REMOTE_HOST");
}
if (had_port_) {
setenv("CUOPT_REMOTE_PORT", saved_port_.c_str(), 1);
} else {
unsetenv("CUOPT_REMOTE_PORT");
}
`#include` <mutex>
// ... other includes ...
namespace cuopt::linear_programming::test {
namespace {
std::mutex env_mutex;
}
class RemoteSolveConfigTest : public ::testing::Test {
protected:
void SetUp() override
{
env_lock_ = std::unique_lock<std::mutex>(env_mutex);
// Save original environment variables
const char* host_env = std::getenv("CUOPT_REMOTE_HOST");
const char* port_env = std::getenv("CUOPT_REMOTE_PORT");
saved_host_ = host_env ? std::string(host_env) : std::string();
saved_port_ = port_env ? std::string(port_env) : std::string();
had_host_ = (host_env != nullptr);
had_port_ = (port_env != nullptr);
// Clean environment for test
unsetenv("CUOPT_REMOTE_HOST");
unsetenv("CUOPT_REMOTE_PORT");
}
void TearDown() override
{
// Restore original environment variables
if (had_host_) {
setenv("CUOPT_REMOTE_HOST", saved_host_.c_str(), 1);
} else {
unsetenv("CUOPT_REMOTE_HOST");
}
if (had_port_) {
setenv("CUOPT_REMOTE_PORT", saved_port_.c_str(), 1);
} else {
unsetenv("CUOPT_REMOTE_PORT");
}
env_lock_.unlock();
}
private:
std::string saved_host_;
std::string saved_port_;
bool had_host_ = false;
bool had_port_ = false;
std::unique_lock<std::mutex> env_lock_;
};
🤖 Prompt for AI Agents
In `@cpp/tests/linear_programming/unit_tests/memory_model_infrastructure_test.cu`
around lines 36 - 65, The tests mutate process-global CUOPT_REMOTE_HOST/PORT in
RemoteSolveConfigTest::SetUp/ TearDown which can race when tests run in
parallel; fix by introducing a global test-scope mutex (e.g., a static
std::mutex or a test helper ScopedEnvLock) and acquire it for the entire
duration of each test instance in SetUp and release in TearDown (or use RAII
ScopedEnvLock constructed in SetUp and destroyed in TearDown); ensure the lock
covers both the unsetenv/setenv calls and any GPU/global-state touches so
environment and global state are serialized across tests.

tmckayus and others added 3 commits January 31, 2026 18:38
- Created optimization_problem_interface_t with gpu_optimization_problem_t
  and cpu_optimization_problem_t implementations
- GPU backend uses rmm::device_uvector, CPU backend uses std::vector
- Added zero-copy move-based setters to optimization_problem_t for efficient
  GPU->GPU transfers via to_optimization_problem()
- Backend selection via environment variables: CUOPT_USE_GPU_MEM,
  CUOPT_REMOTE_HOST, CUOPT_REMOTE_PORT
- Integrated with C API (cuopt_c.cpp), CLI (cuopt_cli.cpp), and Python
  (cython_solve.cu) - all use backend selection and new problem classes
- Added remote execution stubs (solve_lp_remote, solve_mip_remote) for
  future gRPC implementation
- Implement cpu_pdlp_warm_start_data_t for CPU-based warmstart data
- Add cross-backend warmstart conversion (GPU<->CPU) in populate_from_data_model_view
- Refactor Python bindings to use std::variant and zero-copy data transfer
- Add conversion methods (to_*_ret_t) in solution classes for cleaner Cython interface
- Fix Cython compilation errors with unique_ptr handling

Co-authored-by: Cursor <cursoragent@cursor.com>
Cleanup:
- Remove unnecessary int64_t template instantiations
- Auto-detect problem category (LP/MIP/IP) in set_variable_types methods
- Simplify cuopt_c.cpp variable type handling

Defer CUDA initialization for CPU-only hosts with remote execution:
- cuopt_cli: Conditionally create raft::handle_t and RMM resources only for GPU backend
- Python: Add lazy module loading to avoid CUDA init on import
- Python: Break circular import by moving solver_parameters imports to function scope
Copy link

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 13

🤖 Fix all issues with AI agents
In `@cpp/include/cuopt/linear_programming/gpu_optimization_problem_solution.hpp`:
- Around line 66-107: The const getters get_primal_solution_host,
get_dual_solution_host, and get_reduced_cost_host currently mutate shared
optional caches without synchronization; protect initialization of
primal_solution_host_cache_, dual_solution_host_cache_, and
reduced_cost_host_cache_ by adding thread-safety (e.g., introduce mutable
std::mutex members or per-cache std::once_flag/mutexes and lock/guard them
inside each getter before testing/initializing the cache) so only one thread
performs the device->host copy and other threads safely read the cached
std::vector; ensure the mutex/once_flag members are mutable to allow use in
const methods and apply the same pattern to all three getters.

In
`@cpp/include/cuopt/linear_programming/optimization_problem_solution_interface.hpp`:
- Around line 57-62: The base class optimization_problem_solution_interface_t
declares virtual double get_solve_time() which conflicts with
lp_solution_interface_t::get_solve_time() returning f_t; remove the base-class
get_solve_time() declaration from optimization_problem_solution_interface_t (or
alternatively make it return f_t if f_t is a common type available) so the
derived lp_solution_interface_t can provide the single consistent accessor
get_solve_time() with return type f_t and avoid hiding/override mismatch.

In `@cpp/include/cuopt/linear_programming/optimization_problem_utils.hpp`:
- Around line 84-94: char_variable_types may have a different length than
n_vars, so calling problem->set_variable_types(enum_variable_types.data(),
n_vars) can read past enum_variable_types; ensure you use the actual length of
enum_variable_types (e.g., enum_variable_types.size() or
char_variable_types.size()) when calling set_variable_types. Update the
conversion block that builds enum_variable_types (from
data_model.get_variable_types() and var_t) to compute a size_t count =
enum_variable_types.size() and pass that count to problem->set_variable_types
instead of n_vars, and optionally validate/early-return if sizes mismatch.

In `@cpp/src/linear_programming/cpu_optimization_problem.cpp`:
- Around line 763-768: The CSR matrix comparison in is_equivalent() only checks
A_.size() against other_A_values.size() which can miss differing nonzero values;
update is_equivalent() to perform a full CSR value comparison (respecting
row/column permutations used elsewhere) or, if keeping the simplified check for
now, make the comment explicit and add a TODO and an assertion guard for
intended CI-only use: modify is_equivalent() to either implement value-wise
comparison of A_ against other_A_values using the same permutations applied to
row_ptr/col_idx, or add a clear TODO and runtime assertion/guard that this
function is only used for MPS roundtrip tests; reference symbols:
is_equivalent(), A_, other_A_values, and the permutation arrays used earlier in
the function.

In `@cpp/src/linear_programming/cuopt_c_internal.hpp`:
- Around line 75-94: The struct solution_and_stream_view_t currently owns raw
pointers (mip_solution_interface_ptr, lp_solution_interface_ptr) and defines a
destructor but not the other special members; to avoid double-free, delete the
copy constructor and copy assignment, and implement move constructor and move
assignment that transfer ownership of mip_solution_interface_ptr,
lp_solution_interface_ptr, and backend_type while nulling the source pointers
and preserving is_mip; keep the destructor to delete any remaining owned
pointers. Update symbols: solution_and_stream_view_t,
mip_solution_interface_ptr, lp_solution_interface_ptr, is_mip, backend_type, and
the existing ~solution_and_stream_view_t to ensure safe move semantics and
disabled copying.
- Around line 23-73: The struct problem_and_stream_view_t currently owns raw
pointers (gpu_problem, cpu_problem, stream_view_ptr, handle_ptr) but lacks
copy/move special members, risking double-free on copy; delete the copy
constructor and copy assignment operator and implement a move constructor and
move assignment that transfer ownership by moving gpu_problem, cpu_problem,
stream_view_ptr, and handle_ptr from the source to *this and set the source
pointers to nullptr, ensuring the destructor (already null-safe) will only free
moved-in resources; keep get_handle_ptr, get_problem, and
to_optimization_problem behavior intact after the move.

In `@cpp/src/linear_programming/gpu_optimization_problem.cu`:
- Around line 756-846: The is_equivalent implementation must (1) fallback to
direct-order comparison when variable/row names are missing instead of returning
false, and (2) actually compare CSR matrix data instead of only sizes. Update
gpu_optimization_problem_t<i_t,f_t>::is_equivalent to: if get_variable_names()
or get_row_names() are empty, skip building var_perm/row_perm and compare
objective coefficients, bounds, types and full CSR arrays in direct index order;
otherwise build var_perm and row_perm as now and use them to permute columns and
rows when comparing the CSR components returned by
get_constraint_matrix_values_host(), get_constraint_matrix_col_indices_host(),
and get_constraint_matrix_row_offsets_host() (compare values with fabs tolerance
and exact match for indices/offsets/types), and ensure you also check
sizes/offsets consistently to avoid out-of-bounds when permuting.
- Around line 67-83: In
gpu_optimization_problem_t<i_t,f_t>::set_csr_constraint_matrix validate that
size_offsets > 0 before computing n_constraints_ and before resizing/copying A_,
A_indices_, and A_offsets_; if size_offsets == 0, return/throw a clear error
(e.g., throw std::invalid_argument or assert) to avoid underflow of
n_constraints_ = size_offsets - 1 and prevent invalid CSR state, otherwise
proceed to set n_constraints_, resize A_, A_indices_, A_offsets_, and perform
raft::copy as currently implemented.
- Around line 114-130: The method set_quadratic_objective_matrix currently
copies Q_values/Q_indices/Q_offsets into host std::vector members (Q_values_,
Q_indices_, Q_offsets_) using std::copy, which conflicts with the class doc
claiming setters accept device pointers; either update the docs or add
device-aware copying: detect device pointers (or accept a flag), and if inputs
are device memory use raft::copy into the host vectors or change members to
rmm::device_uvector and use raft::copy to copy from host to device as
appropriate; update set_quadratic_objective_matrix implementation to mirror the
device-aware behavior used by set_variable_lower_bounds (use
raft::copy/rmm::device_uvector) or change the interface doc to state it accepts
host pointers only so behavior matches Q_values_/Q_indices_/Q_offsets storage.

In `@cpp/src/linear_programming/optimization_problem.cu`:
- Around line 620-684: Several move-setters leave metadata stale: ensure setters
that change sizes also update n_vars_ / n_constraints_ and that
set_variable_types_move also recomputes problem_category_. Specifically, keep
the existing n_constraints_ update in set_csr_constraint_matrix_move, add
n_constraints_ updates to any other constraint-buffer setters if they change
A_offsets_, set n_vars_ = variable_types_.size() (or at least ensure n_vars_
matches c_.size()/variable_types_.size()) inside set_variable_types_move, and
after assigning variable_types_ recompute problem_category_ using the same
logic/path used elsewhere when variable types are set (i.e., mirror the
classification code used when building the problem from non-move APIs so
LP/MIP/IP category and bounds checks remain consistent). Ensure each move-based
setter that affects counts mirrors the non-move setter behaviors (use the same
symbols: n_vars_, n_constraints_, variable_types_, problem_category_).

In `@cpp/src/linear_programming/solve_remote.cu`:
- Around line 151-169: The GPU->CPU conversion is missing copying of row types
and constraint bounds; call the GPU getters (e.g.,
gpu_problem.get_row_types_host() and gpu_problem.get_constraint_bounds_host())
and, if non-empty, pass their data and sizes into the corresponding CPU setters
(e.g., cpu_problem.set_row_types(..., ...) and
cpu_problem.set_constraint_bounds(..., ...)); place these after the existing
constraint bounds copy so the CPU problem receives the row_types (constraint
sense 'E'/'L'/'G') and the RHS b-vector for non-ranged constraints.

In `@cpp/src/linear_programming/utilities/cython_solve.cu`:
- Around line 222-224: The code currently calls lp_solution_ptr.release() before
invoking std::move(*gpu_lp_sol).to_linear_programming_ret_t(), which leaks
memory if to_linear_programming_ret_t() throws; instead, keep ownership until
the conversion succeeds: do not call lp_solution_ptr.release() prior to
conversion, call std::move(*gpu_lp_sol).to_linear_programming_ret_t() while
lp_solution_ptr still owns the memory (access via lp_solution_ptr.get() or by
dereferencing), assign response.lp_ret from that result, and only call
lp_solution_ptr.release() (or std::unique_ptr reset/move) after the conversion
completes successfully; apply the same change for the other occurrences around
to_linear_programming_ret_t() at the mentioned locations.

In `@python/cuopt/cuopt/linear_programming/solver/solver.pxd`:
- Around line 128-130: Remove the redundant C++ redeclaration of device_buffer:
delete the entire cdef extern from "<rmm/device_buffer.hpp>" namespace "rmm":
block that defines cppclass device_buffer and rely on the existing cimport of
device_buffer (from rmm.librmm.device_buffer on line 16) so there is a single
consistent declaration across .pxd files and no symbol conflicts.
🧹 Nitpick comments (8)
cpp/include/cuopt/linear_programming/pdlp/pdlp_warm_start_data.hpp (1)

73-74: LGTM - Consider aligning style with CPU version.

The is_populated() sentinel check is correct. For consistency with cpu_pdlp_warm_start_data.hpp (line 98) which uses !...empty(), consider:

-  bool is_populated() const { return last_restart_duality_gap_dual_solution_.size() > 0; }
+  bool is_populated() const { return !last_restart_duality_gap_dual_solution_.empty(); }

Both are functionally equivalent; !empty() is the more idiomatic C++ style for container non-emptiness checks.

cpp/src/linear_programming/cpu_pdlp_warm_start_data.cu (1)

40-73: Consider batching stream synchronization for better performance.

Each device_to_host_vector call synchronizes the stream independently. For the 9 vector fields being copied, this results in 9 separate synchronizations. Batching the copies and performing a single sync at the end would reduce synchronization overhead.

♻️ Suggested approach

Create a variant that doesn't synchronize internally, then synchronize once after all copies:

 // Helper to copy device_uvector to std::vector (D2H)
 template <typename T>
 std::vector<T> device_to_host_vector(const rmm::device_uvector<T>& device_vec,
-                                     rmm::cuda_stream_view stream)
+                                     rmm::cuda_stream_view stream,
+                                     bool sync = true)
 {
   if (device_vec.size() == 0) return std::vector<T>();
 
   std::vector<T> host_vec(device_vec.size());
   raft::copy(host_vec.data(), device_vec.data(), device_vec.size(), stream);
-  stream.synchronize();
+  if (sync) stream.synchronize();
   return host_vec;
 }

Then in convert_to_cpu_warmstart, pass false for sync on all calls except the last, or call stream.synchronize() once at the end.

cpp/src/linear_programming/cuopt_c.cpp (1)

413-427: Repeated backend branching pattern could benefit from abstraction.

The pattern of checking backend_type == problem_backend_t::CPU and then either using host getters or copying from device appears in many getter functions (cuOptGetObjectiveCoefficients, cuOptGetConstraintMatrix, cuOptGetConstraintSense, etc.).

Consider extracting this into a helper template or macro to reduce duplication. However, given this is the C API layer and clarity is important, the current explicit approach is acceptable.

cpp/src/linear_programming/cuopt_c_internal.hpp (1)

40-46: Destructor deletion order is correct but fragile.

The deletion order (problem → handle → stream) is appropriate since problems may reference handles. However, this implicit ordering dependency is not documented and could break if refactored.

Consider adding a brief comment documenting the deletion order rationale, or using std::unique_ptr with custom deleters to make ownership explicit.

cpp/include/cuopt/linear_programming/cpu_pdlp_warm_start_data.hpp (1)

50-95: Consider helper to reduce repetitive null-check pattern.

The constructor has 9 nearly identical blocks checking data() != nullptr before copying. While functional, this could be simplified with a helper lambda or template function.

♻️ Optional refactor using helper lambda
   cpu_pdlp_warm_start_data_t(const pdlp_warm_start_data_view_t<i_t, f_t>& view)
     : initial_primal_weight_(view.initial_primal_weight_),
       // ... scalar initializers ...
   {
+    auto copy_span = [](auto& dest, const auto& src) {
+      if (src.data() != nullptr) {
+        dest.assign(src.data(), src.data() + src.size());
+      }
+    };
+    copy_span(current_primal_solution_, view.current_primal_solution_);
+    copy_span(current_dual_solution_, view.current_dual_solution_);
+    // ... etc for all 9 vectors ...
-    // Copy vector data from spans
-    if (view.current_primal_solution_.data() != nullptr) {
-      current_primal_solution_.assign(
-        view.current_primal_solution_.data(),
-        view.current_primal_solution_.data() + view.current_primal_solution_.size());
-    }
-    // ... repeated 8 more times ...
   }

Based on learnings: "Refactor code duplication in solver components (3+ occurrences) into shared utilities."

cpp/src/linear_programming/cpu_optimization_problem.cpp (1)

26-31: Use logging instead of fprintf for consistency.

The constructor uses fprintf(stderr, ...) while the rest of the codebase uses CUOPT_LOG_* macros. This could cause inconsistent output formatting.

♻️ Proposed fix
 template <typename i_t, typename f_t>
 cpu_optimization_problem_t<i_t, f_t>::cpu_optimization_problem_t(raft::handle_t const* handle_ptr)
   : handle_ptr_(handle_ptr)
 {
-  fprintf(stderr, "cpu_optimization_problem_t constructor: Using CPU backend\n");
+  CUOPT_LOG_INFO("cpu_optimization_problem_t constructor: Using CPU backend");
 }
cpp/include/cuopt/linear_programming/gpu_optimization_problem_solution.hpp (1)

159-283: Extract a shared device‑to‑host copy helper for warm‑start accessors.

The warm‑start getters repeat the same size‑check → allocate → copy → sync pattern. A small helper would reduce duplication and keep copy/sync behavior consistent.

Based on learnings: Refactor code duplication in solver components (3+ occurrences) into shared utilities; for GPU kernels, use templated device functions to avoid duplication.

cpp/include/cuopt/linear_programming/optimization_problem_interface.hpp (1)

430-435: Add override on to_optimization_problem() in concrete classes.

This helps the compiler catch signature drift in the interface implementations.

♻️ Proposed diff
-  optimization_problem_t<i_t, f_t> to_optimization_problem();
+  optimization_problem_t<i_t, f_t> to_optimization_problem() override;
...
-  optimization_problem_t<i_t, f_t> to_optimization_problem();
+  optimization_problem_t<i_t, f_t> to_optimization_problem() override;

Also applies to: 586-592

Comment on lines +66 to +107
const std::vector<f_t>& get_primal_solution_host() const override
{
if (!primal_solution_host_cache_) {
// Copy from device to host using per-thread stream
auto stream = rmm::cuda_stream_per_thread;
primal_solution_host_cache_ = std::vector<f_t>(solution_.get_primal_solution().size());
raft::copy(primal_solution_host_cache_->data(),
solution_.get_primal_solution().data(),
solution_.get_primal_solution().size(),
stream);
stream.synchronize();
}
return *primal_solution_host_cache_;
}

const std::vector<f_t>& get_dual_solution_host() const override
{
if (!dual_solution_host_cache_) {
auto stream = rmm::cuda_stream_per_thread;
dual_solution_host_cache_ = std::vector<f_t>(solution_.get_dual_solution().size());
raft::copy(dual_solution_host_cache_->data(),
solution_.get_dual_solution().data(),
solution_.get_dual_solution().size(),
stream);
stream.synchronize();
}
return *dual_solution_host_cache_;
}

const std::vector<f_t>& get_reduced_cost_host() const override
{
if (!reduced_cost_host_cache_) {
auto stream = rmm::cuda_stream_per_thread;
auto& reduced_cost =
const_cast<optimization_problem_solution_t<i_t, f_t>&>(solution_).get_reduced_cost();
reduced_cost_host_cache_ = std::vector<f_t>(reduced_cost.size());
raft::copy(
reduced_cost_host_cache_->data(), reduced_cost.data(), reduced_cost.size(), stream);
stream.synchronize();
}
return *reduced_cost_host_cache_;
}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟠 Major

Guard lazy host caches against concurrent access.

These const getters mutate shared optional caches without synchronization; if the wrapper is shared across threads (callbacks, async consumers), this is a data race. Add a mutex/once-flag around cache init or clearly document single-threaded usage.

As per coding guidelines: Ensure race conditions are absent in multi-GPU code and multi-threaded server implementations; verify proper synchronization of shared state.

🤖 Prompt for AI Agents
In `@cpp/include/cuopt/linear_programming/gpu_optimization_problem_solution.hpp`
around lines 66 - 107, The const getters get_primal_solution_host,
get_dual_solution_host, and get_reduced_cost_host currently mutate shared
optional caches without synchronization; protect initialization of
primal_solution_host_cache_, dual_solution_host_cache_, and
reduced_cost_host_cache_ by adding thread-safety (e.g., introduce mutable
std::mutex members or per-cache std::once_flag/mutexes and lock/guard them
inside each getter before testing/initializing the cache) so only one thread
performs the device->host copy and other threads safely read the cached
std::vector; ensure the mutex/once_flag members are mutable to allow use in
const methods and apply the same pattern to all three getters.

Comment on lines 57 to 62
/**
* @brief Get the solve time in seconds
* @return Time in seconds
*/
virtual double get_solve_time() const = 0;
};
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟠 Major

Return type mismatch for get_solve_time() in inheritance hierarchy.

The base class optimization_problem_solution_interface_t declares get_solve_time() returning double (line 61), but the derived lp_solution_interface_t redeclares it returning f_t (line 112). This causes:

  1. Potential hiding of the base class method (not a valid override due to different return type)
  2. Ambiguity when f_t is not double

The base class method should likely be removed or made consistent:

🐛 Proposed fix - remove base class declaration
 template <typename i_t, typename f_t>
 class optimization_problem_solution_interface_t {
  public:
   virtual ~optimization_problem_solution_interface_t() = default;

   virtual bool is_mip() const = 0;
   virtual cuopt::logic_error get_error_status() const = 0;
-
-  /**
-   * `@brief` Get the solve time in seconds
-   * `@return` Time in seconds
-   */
-  virtual double get_solve_time() const = 0;
 };

Alternatively, use f_t consistently or add a separate accessor in the base class.

Also applies to: 108-113

🤖 Prompt for AI Agents
In
`@cpp/include/cuopt/linear_programming/optimization_problem_solution_interface.hpp`
around lines 57 - 62, The base class optimization_problem_solution_interface_t
declares virtual double get_solve_time() which conflicts with
lp_solution_interface_t::get_solve_time() returning f_t; remove the base-class
get_solve_time() declaration from optimization_problem_solution_interface_t (or
alternatively make it return f_t if f_t is a common type available) so the
derived lp_solution_interface_t can provide the single consistent accessor
get_solve_time() with return type f_t and avoid hiding/override mismatch.

Comment on lines +763 to +768
// For CSR matrix, we'd need more complex comparison - for now just check size matches
// A full implementation would need to compare matrix entries with row/column permutations
if (A_.size() != other_A_values.size()) return false;

return true;
}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟡 Minor

🧩 Analysis chain

🏁 Script executed:

# First, let's locate and examine the is_equivalent() function
rg -n "is_equivalent" --type cpp -B 5 -A 15 cpp/src/linear_programming/cpu_optimization_problem.cpp

Repository: NVIDIA/cuopt

Length of output: 1123


🏁 Script executed:

# Check where is_equivalent is used
rg -n "is_equivalent" --type cpp

Repository: NVIDIA/cuopt

Length of output: 957


🏁 Script executed:

# Look for the complete function context around lines 763-768
sed -n '740,800p' cpp/src/linear_programming/cpu_optimization_problem.cpp

Repository: NVIDIA/cuopt

Length of output: 1592


🏁 Script executed:

# Look at the test usage
sed -n '170,200p' cpp/tests/linear_programming/c_api_tests/c_api_tests.cpp

Repository: NVIDIA/cuopt

Length of output: 1204


🏁 Script executed:

# Check what A_ is - look at the class definition and CSR matrix type
rg -n "A_" cpp/src/linear_programming/cpu_optimization_problem.cpp | head -20

Repository: NVIDIA/cuopt

Length of output: 1116


🏁 Script executed:

# Find the class definition to understand A_ member
sed -n '1,100p' cpp/src/linear_programming/cpu_optimization_problem.cpp | grep -A 50 "class cpu_optimization_problem_t"

Repository: NVIDIA/cuopt

Length of output: 38


🏁 Script executed:

# Look at the complete class header
rg -n "class cpu_optimization_problem_t" --type cpp -A 30

Repository: NVIDIA/cuopt

Length of output: 4948


🏁 Script executed:

# Check all usages of is_equivalent to understand the full scope
rg -n "is_equivalent\(" --type cpp -B 3 -A 3

Repository: NVIDIA/cuopt

Length of output: 4827


🏁 Script executed:

# Look at the header file to understand what this method is supposed to do
sed -n '320,340p' cpp/include/cuopt/linear_programming/optimization_problem_interface.hpp

Repository: NVIDIA/cuopt

Length of output: 999


🏁 Script executed:

# Check if there's any related CSR comparison function mentioned in the learnings
rg -n "csr_matrices_equivalent_with_permutation" --type cpp -A 20

Repository: NVIDIA/cuopt

Length of output: 38


🏁 Script executed:

# Check if there are other implementations of is_equivalent in GPU or other backends
rg -n "is_equivalent" --type cpp -A 50 | grep -A 50 "gpu_optimization_problem_t"

Repository: NVIDIA/cuopt

Length of output: 6633


🏁 Script executed:

# Look at the test file more to understand the roundtrip test context
sed -n '140,210p' cpp/tests/linear_programming/c_api_tests/c_api_tests.cpp

Repository: NVIDIA/cuopt

Length of output: 3132


CSR matrix comparison in is_equivalent() is incomplete but acceptable for current roundtrip testing.

The method only checks CSR matrix size (non-zero count), not actual values, despite implementing permutation-based comparison for all other arrays. While this could theoretically miss matrices with identical sparsity but different values, it is sufficient for the intended use case: MPS file roundtrip testing with deterministic read/write behavior. The limitation is acknowledged in the code comment. If this method is used in the future for general problem equivalence validation outside CI tests, add explicit CSR value comparison with row/column permutation support.

🤖 Prompt for AI Agents
In `@cpp/src/linear_programming/cpu_optimization_problem.cpp` around lines 763 -
768, The CSR matrix comparison in is_equivalent() only checks A_.size() against
other_A_values.size() which can miss differing nonzero values; update
is_equivalent() to perform a full CSR value comparison (respecting row/column
permutations used elsewhere) or, if keeping the simplified check for now, make
the comment explicit and add a TODO and an assertion guard for intended CI-only
use: modify is_equivalent() to either implement value-wise comparison of A_
against other_A_values using the same permutations applied to row_ptr/col_idx,
or add a clear TODO and runtime assertion/guard that this function is only used
for MPS roundtrip tests; reference symbols: is_equivalent(), A_, other_A_values,
and the permutation arrays used earlier in the function.

Comment on lines 23 to 73
struct problem_and_stream_view_t {
problem_and_stream_view_t()
: op_problem(nullptr), stream_view(rmm::cuda_stream_per_thread), handle(stream_view)
problem_and_stream_view_t(problem_backend_t backend)
: backend_type(backend), stream_view_ptr(nullptr), handle_ptr(nullptr)
{
if (backend == problem_backend_t::GPU) {
// GPU backend: Allocate CUDA resources
stream_view_ptr = new rmm::cuda_stream_view(rmm::cuda_stream_per_thread);
handle_ptr = new raft::handle_t(*stream_view_ptr);
gpu_problem = new gpu_optimization_problem_t<cuopt_int_t, cuopt_float_t>(handle_ptr);
cpu_problem = nullptr;
} else {
// CPU backend: No CUDA resources allocated (for remote execution on CPU-only hosts)
cpu_problem = new cpu_optimization_problem_t<cuopt_int_t, cuopt_float_t>(nullptr);
gpu_problem = nullptr;
}
}
raft::handle_t* get_handle_ptr() { return &handle; }
optimization_problem_t<cuopt_int_t, cuopt_float_t>* op_problem;
rmm::cuda_stream_view stream_view;
raft::handle_t handle;

~problem_and_stream_view_t()
{
if (gpu_problem) delete gpu_problem;
if (cpu_problem) delete cpu_problem;
if (handle_ptr) delete handle_ptr;
if (stream_view_ptr) delete stream_view_ptr;
}

raft::handle_t* get_handle_ptr() { return handle_ptr; }

optimization_problem_interface_t<cuopt_int_t, cuopt_float_t>* get_problem()
{
return backend_type == problem_backend_t::GPU
? static_cast<optimization_problem_interface_t<cuopt_int_t, cuopt_float_t>*>(
gpu_problem)
: static_cast<optimization_problem_interface_t<cuopt_int_t, cuopt_float_t>*>(
cpu_problem);
}

optimization_problem_t<cuopt_int_t, cuopt_float_t> to_optimization_problem()
{
if (backend_type == problem_backend_t::GPU) {
return gpu_problem->to_optimization_problem();
} else {
return cpu_problem->to_optimization_problem();
}
}

problem_backend_t backend_type;
gpu_optimization_problem_t<cuopt_int_t, cuopt_float_t>* gpu_problem;
cpu_optimization_problem_t<cuopt_int_t, cuopt_float_t>* cpu_problem;
rmm::cuda_stream_view* stream_view_ptr; // nullptr for CPU backend to avoid CUDA initialization
raft::handle_t* handle_ptr; // nullptr for CPU backend to avoid CUDA initialization
};
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟠 Major

Missing Rule of Five: potential double-free on copy/move.

problem_and_stream_view_t manages raw owning pointers but lacks copy/move constructors and assignment operators. If accidentally copied, the destructor will double-free resources.

Consider deleting copy operations and implementing move semantics:

🛡️ Proposed fix
 struct problem_and_stream_view_t {
   problem_and_stream_view_t(problem_backend_t backend)
     : backend_type(backend), stream_view_ptr(nullptr), handle_ptr(nullptr)
   {
     // ... existing constructor body
   }
+
+  // Prevent accidental copies (would double-free)
+  problem_and_stream_view_t(const problem_and_stream_view_t&) = delete;
+  problem_and_stream_view_t& operator=(const problem_and_stream_view_t&) = delete;
+
+  // Allow moves
+  problem_and_stream_view_t(problem_and_stream_view_t&& other) noexcept
+    : backend_type(other.backend_type),
+      gpu_problem(other.gpu_problem),
+      cpu_problem(other.cpu_problem),
+      stream_view_ptr(other.stream_view_ptr),
+      handle_ptr(other.handle_ptr)
+  {
+    other.gpu_problem = nullptr;
+    other.cpu_problem = nullptr;
+    other.stream_view_ptr = nullptr;
+    other.handle_ptr = nullptr;
+  }
+  problem_and_stream_view_t& operator=(problem_and_stream_view_t&&) = delete;
🤖 Prompt for AI Agents
In `@cpp/src/linear_programming/cuopt_c_internal.hpp` around lines 23 - 73, The
struct problem_and_stream_view_t currently owns raw pointers (gpu_problem,
cpu_problem, stream_view_ptr, handle_ptr) but lacks copy/move special members,
risking double-free on copy; delete the copy constructor and copy assignment
operator and implement a move constructor and move assignment that transfer
ownership by moving gpu_problem, cpu_problem, stream_view_ptr, and handle_ptr
from the source to *this and set the source pointers to nullptr, ensuring the
destructor (already null-safe) will only free moved-in resources; keep
get_handle_ptr, get_problem, and to_optimization_problem behavior intact after
the move.

Comment on lines +756 to +846
template <typename i_t, typename f_t>
bool gpu_optimization_problem_t<i_t, f_t>::is_equivalent(
const optimization_problem_interface_t<i_t, f_t>& other) const
{
// Compare scalar properties
if (maximize_ != other.get_sense()) return false;
if (n_vars_ != other.get_n_variables()) return false;
if (n_constraints_ != other.get_n_constraints()) return false;
if (objective_scaling_factor_ != other.get_objective_scaling_factor()) return false;
if (objective_offset_ != other.get_objective_offset()) return false;
if (problem_category_ != other.get_problem_category()) return false;

// Get host data from both problems
auto this_c = get_objective_coefficients_host();
auto other_c = other.get_objective_coefficients_host();
if (this_c.size() != other_c.size()) return false;

auto this_var_lb = get_variable_lower_bounds_host();
auto other_var_lb = other.get_variable_lower_bounds_host();
if (this_var_lb.size() != other_var_lb.size()) return false;

auto this_var_ub = get_variable_upper_bounds_host();
auto other_var_ub = other.get_variable_upper_bounds_host();
if (this_var_ub.size() != other_var_ub.size()) return false;

auto this_var_types = get_variable_types_host();
auto other_var_types = other.get_variable_types_host();
if (this_var_types.size() != other_var_types.size()) return false;

auto this_b = get_constraint_bounds_host();
auto other_b = other.get_constraint_bounds_host();
if (this_b.size() != other_b.size()) return false;

auto this_A_values = get_constraint_matrix_values_host();
auto other_A_values = other.get_constraint_matrix_values_host();
if (this_A_values.size() != other_A_values.size()) return false;

// Check if we have variable and row names for permutation matching
const auto& this_var_names = get_variable_names();
const auto& other_var_names = other.get_variable_names();
const auto& this_row_names = get_row_names();
const auto& other_row_names = other.get_row_names();

if (this_var_names.empty() || other_var_names.empty()) return false;
if (this_row_names.empty() || other_row_names.empty()) return false;

// Build variable permutation map
std::unordered_map<std::string, i_t> other_var_idx;
for (size_t j = 0; j < other_var_names.size(); ++j) {
other_var_idx[other_var_names[j]] = static_cast<i_t>(j);
}

std::vector<i_t> var_perm(n_vars_);
for (i_t i = 0; i < n_vars_; ++i) {
auto it = other_var_idx.find(this_var_names[i]);
if (it == other_var_idx.end()) return false;
var_perm[i] = it->second;
}

// Build row permutation map
std::unordered_map<std::string, i_t> other_row_idx;
for (size_t j = 0; j < other_row_names.size(); ++j) {
other_row_idx[other_row_names[j]] = static_cast<i_t>(j);
}

std::vector<i_t> row_perm(n_constraints_);
for (i_t i = 0; i < n_constraints_; ++i) {
auto it = other_row_idx.find(this_row_names[i]);
if (it == other_row_idx.end()) return false;
row_perm[i] = it->second;
}

// Compare variable-indexed arrays with permutation
for (i_t i = 0; i < n_vars_; ++i) {
i_t j = var_perm[i];
if (std::abs(this_c[i] - other_c[j]) > 1e-9) return false;
if (std::abs(this_var_lb[i] - other_var_lb[j]) > 1e-9) return false;
if (std::abs(this_var_ub[i] - other_var_ub[j]) > 1e-9) return false;
if (this_var_types[i] != other_var_types[j]) return false;
}

// Compare constraint-indexed arrays with permutation
for (i_t i = 0; i < n_constraints_; ++i) {
i_t j = row_perm[i];
if (std::abs(this_b[i] - other_b[j]) > 1e-9) return false;
}

// For CSR matrix, we'd need more complex comparison - for now just check size matches
// A full implementation would need to compare matrix entries with row/column permutations
if (this_A_values.size() != other_A_values.size()) return false;

Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟠 Major

is_equivalent can return false positives/negatives.

Two issues:

  1. It returns false when names are missing, even if data is identical (no fallback to direct-order comparison).
  2. CSR matrices are only checked for size equality, so different matrices can compare as equivalent.

Please add a direct-order fallback when names are absent and compare CSR values/indices/offsets (with permutation when names exist).

🤖 Prompt for AI Agents
In `@cpp/src/linear_programming/gpu_optimization_problem.cu` around lines 756 -
846, The is_equivalent implementation must (1) fallback to direct-order
comparison when variable/row names are missing instead of returning false, and
(2) actually compare CSR matrix data instead of only sizes. Update
gpu_optimization_problem_t<i_t,f_t>::is_equivalent to: if get_variable_names()
or get_row_names() are empty, skip building var_perm/row_perm and compare
objective coefficients, bounds, types and full CSR arrays in direct index order;
otherwise build var_perm and row_perm as now and use them to permute columns and
rows when comparing the CSR components returned by
get_constraint_matrix_values_host(), get_constraint_matrix_col_indices_host(),
and get_constraint_matrix_row_offsets_host() (compare values with fabs tolerance
and exact match for indices/offsets/types), and ensure you also check
sizes/offsets consistently to avoid out-of-bounds when permuting.

Comment on lines +620 to +684
template <typename i_t, typename f_t>
void optimization_problem_t<i_t, f_t>::set_csr_constraint_matrix_move(
rmm::device_uvector<f_t>&& A_values,
rmm::device_uvector<i_t>&& A_indices,
rmm::device_uvector<i_t>&& A_offsets)
{
A_ = std::move(A_values);
A_indices_ = std::move(A_indices);
A_offsets_ = std::move(A_offsets);
n_constraints_ = A_offsets_.size() - 1;
}

template <typename i_t, typename f_t>
void optimization_problem_t<i_t, f_t>::set_constraint_bounds_move(rmm::device_uvector<f_t>&& b)
{
b_ = std::move(b);
}

template <typename i_t, typename f_t>
void optimization_problem_t<i_t, f_t>::set_objective_coefficients_move(rmm::device_uvector<f_t>&& c)
{
c_ = std::move(c);
n_vars_ = c_.size();
}

template <typename i_t, typename f_t>
void optimization_problem_t<i_t, f_t>::set_variable_lower_bounds_move(
rmm::device_uvector<f_t>&& variable_lower_bounds)
{
variable_lower_bounds_ = std::move(variable_lower_bounds);
}

template <typename i_t, typename f_t>
void optimization_problem_t<i_t, f_t>::set_variable_upper_bounds_move(
rmm::device_uvector<f_t>&& variable_upper_bounds)
{
variable_upper_bounds_ = std::move(variable_upper_bounds);
}

template <typename i_t, typename f_t>
void optimization_problem_t<i_t, f_t>::set_variable_types_move(
rmm::device_uvector<var_t>&& variable_types)
{
variable_types_ = std::move(variable_types);
}

template <typename i_t, typename f_t>
void optimization_problem_t<i_t, f_t>::set_constraint_lower_bounds_move(
rmm::device_uvector<f_t>&& constraint_lower_bounds)
{
constraint_lower_bounds_ = std::move(constraint_lower_bounds);
}

template <typename i_t, typename f_t>
void optimization_problem_t<i_t, f_t>::set_constraint_upper_bounds_move(
rmm::device_uvector<f_t>&& constraint_upper_bounds)
{
constraint_upper_bounds_ = std::move(constraint_upper_bounds);
}

template <typename i_t, typename f_t>
void optimization_problem_t<i_t, f_t>::set_row_types_move(rmm::device_uvector<char>&& row_types)
{
row_types_ = std::move(row_types);
}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟠 Major

Update size/category metadata in the move-based setters.
Several move setters don't update n_vars_ / n_constraints_ (and set_variable_types_move doesn't recompute problem_category_). If callers rely on the move-based API alone, metadata can stay stale and skew bounds checks or LP/MIP/IP classification.

🛠️ Proposed fix
 void optimization_problem_t<i_t, f_t>::set_constraint_bounds_move(rmm::device_uvector<f_t>&& b)
 {
-  b_ = std::move(b);
+  b_ = std::move(b);
+  n_constraints_ = b_.size();
 }

 void optimization_problem_t<i_t, f_t>::set_variable_lower_bounds_move(
   rmm::device_uvector<f_t>&& variable_lower_bounds)
 {
-  variable_lower_bounds_ = std::move(variable_lower_bounds);
+  variable_lower_bounds_ = std::move(variable_lower_bounds);
+  n_vars_ = variable_lower_bounds_.size();
 }

 void optimization_problem_t<i_t, f_t>::set_variable_upper_bounds_move(
   rmm::device_uvector<f_t>&& variable_upper_bounds)
 {
-  variable_upper_bounds_ = std::move(variable_upper_bounds);
+  variable_upper_bounds_ = std::move(variable_upper_bounds);
+  n_vars_ = variable_upper_bounds_.size();
 }

 void optimization_problem_t<i_t, f_t>::set_variable_types_move(
   rmm::device_uvector<var_t>&& variable_types)
 {
-  variable_types_ = std::move(variable_types);
+  variable_types_ = std::move(variable_types);
+  n_vars_ = variable_types_.size();
+  i_t n_integer = thrust::count_if(handle_ptr_->get_thrust_policy(),
+                                   variable_types_.begin(),
+                                   variable_types_.end(),
+                                   [] __device__(auto val) { return val == var_t::INTEGER; });
+  if (n_integer == n_vars_) {
+    problem_category_ = problem_category_t::IP;
+  } else if (n_integer > 0) {
+    problem_category_ = problem_category_t::MIP;
+  }
 }

 void optimization_problem_t<i_t, f_t>::set_constraint_lower_bounds_move(
   rmm::device_uvector<f_t>&& constraint_lower_bounds)
 {
-  constraint_lower_bounds_ = std::move(constraint_lower_bounds);
+  constraint_lower_bounds_ = std::move(constraint_lower_bounds);
+  n_constraints_ = constraint_lower_bounds_.size();
 }

 void optimization_problem_t<i_t, f_t>::set_constraint_upper_bounds_move(
   rmm::device_uvector<f_t>&& constraint_upper_bounds)
 {
-  constraint_upper_bounds_ = std::move(constraint_upper_bounds);
+  constraint_upper_bounds_ = std::move(constraint_upper_bounds);
+  n_constraints_ = constraint_upper_bounds_.size();
 }

 void optimization_problem_t<i_t, f_t>::set_row_types_move(rmm::device_uvector<char>&& row_types)
 {
-  row_types_ = std::move(row_types);
+  row_types_ = std::move(row_types);
+  n_constraints_ = row_types_.size();
 }
As per coding guidelines: "Validate correct initialization of variable bounds, constraint coefficients, and algorithm state before solving; ensure reset when transitioning between algorithm phases (presolve, simplex, diving, crossover)."
🤖 Prompt for AI Agents
In `@cpp/src/linear_programming/optimization_problem.cu` around lines 620 - 684,
Several move-setters leave metadata stale: ensure setters that change sizes also
update n_vars_ / n_constraints_ and that set_variable_types_move also recomputes
problem_category_. Specifically, keep the existing n_constraints_ update in
set_csr_constraint_matrix_move, add n_constraints_ updates to any other
constraint-buffer setters if they change A_offsets_, set n_vars_ =
variable_types_.size() (or at least ensure n_vars_ matches
c_.size()/variable_types_.size()) inside set_variable_types_move, and after
assigning variable_types_ recompute problem_category_ using the same logic/path
used elsewhere when variable types are set (i.e., mirror the classification code
used when building the problem from non-move APIs so LP/MIP/IP category and
bounds checks remain consistent). Ensure each move-based setter that affects
counts mirrors the non-move setter behaviors (use the same symbols: n_vars_,
n_constraints_, variable_types_, problem_category_).

Comment on lines +151 to +169
// Copy constraint bounds
auto constraint_lb = gpu_problem.get_constraint_lower_bounds_host();
auto constraint_ub = gpu_problem.get_constraint_upper_bounds_host();
if (!constraint_lb.empty()) {
cpu_problem.set_constraint_lower_bounds(constraint_lb.data(), constraint_lb.size());
}
if (!constraint_ub.empty()) {
cpu_problem.set_constraint_upper_bounds(constraint_ub.data(), constraint_ub.size());
}

// Copy variable bounds
auto var_lb = gpu_problem.get_variable_lower_bounds_host();
auto var_ub = gpu_problem.get_variable_upper_bounds_host();
if (!var_lb.empty()) { cpu_problem.set_variable_lower_bounds(var_lb.data(), var_lb.size()); }
if (!var_ub.empty()) { cpu_problem.set_variable_upper_bounds(var_ub.data(), var_ub.size()); }

// Copy variable types
auto var_types = gpu_problem.get_variable_types_host();
if (!var_types.empty()) { cpu_problem.set_variable_types(var_types.data(), var_types.size()); }
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟠 Major

Missing row_types and constraint_bounds in GPU-to-CPU conversion.

The GPU problem conversion copies constraint_lower_bounds and constraint_upper_bounds but does not copy:

  1. row_types (constraint sense: 'E', 'L', 'G')
  2. constraint_bounds (the 'b' vector / RHS for non-ranged constraints)

For problems using row_types-based constraint specification (non-ranged), the converted CPU problem will be missing essential constraint information.

🐛 Proposed fix
   // Copy constraint bounds
   auto constraint_lb = gpu_problem.get_constraint_lower_bounds_host();
   auto constraint_ub = gpu_problem.get_constraint_upper_bounds_host();
   if (!constraint_lb.empty()) {
     cpu_problem.set_constraint_lower_bounds(constraint_lb.data(), constraint_lb.size());
   }
   if (!constraint_ub.empty()) {
     cpu_problem.set_constraint_upper_bounds(constraint_ub.data(), constraint_ub.size());
   }
+
+  // Copy row types (constraint sense)
+  auto row_types = gpu_problem.get_row_types_host();
+  if (!row_types.empty()) {
+    cpu_problem.set_row_types(row_types.data(), row_types.size());
+  }
+
+  // Copy constraint bounds (RHS for non-ranged problems)
+  auto constraint_bounds = gpu_problem.get_constraint_bounds_host();
+  if (!constraint_bounds.empty()) {
+    cpu_problem.set_constraint_bounds(constraint_bounds.data(), constraint_bounds.size());
+  }
🤖 Prompt for AI Agents
In `@cpp/src/linear_programming/solve_remote.cu` around lines 151 - 169, The
GPU->CPU conversion is missing copying of row types and constraint bounds; call
the GPU getters (e.g., gpu_problem.get_row_types_host() and
gpu_problem.get_constraint_bounds_host()) and, if non-empty, pass their data and
sizes into the corresponding CPU setters (e.g., cpu_problem.set_row_types(...,
...) and cpu_problem.set_constraint_bounds(..., ...)); place these after the
existing constraint bounds copy so the CPU problem receives the row_types
(constraint sense 'E'/'L'/'G') and the RHS b-vector for non-ranged constraints.

Comment on lines +128 to +130
cdef extern from "<rmm/device_buffer.hpp>" namespace "rmm":
cdef cppclass device_buffer:
pass
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟡 Minor

🧩 Analysis chain

🏁 Script executed:

cat -n python/cuopt/cuopt/linear_programming/solver/solver.pxd | head -50

Repository: NVIDIA/cuopt

Length of output: 2534


🏁 Script executed:

cat -n python/cuopt/cuopt/linear_programming/solver/solver.pxd | sed -n '120,145p'

Repository: NVIDIA/cuopt

Length of output: 1316


🏁 Script executed:

# Check for all imports and declarations related to device_buffer
rg -n "device_buffer" python/cuopt/cuopt/linear_programming/solver/solver.pxd -B2 -A2

Repository: NVIDIA/cuopt

Length of output: 1598


🏁 Script executed:

# Search for any Cython build output or compilation warnings related to device_buffer
find python/cuopt -name "*.pyx" -o -name "*.pxd" | xargs grep -l "device_buffer" | head -10

Repository: NVIDIA/cuopt

Length of output: 452


🏁 Script executed:

# Check if there are any build files or setup.py that might indicate compilation issues
cat -n python/cuopt/setup.py 2>/dev/null | head -100 || echo "setup.py not found in expected location"

Repository: NVIDIA/cuopt

Length of output: 38


🏁 Script executed:

# Verify the RMM binding definition to understand what line 16 imports
python3 -c "import sys; print('Python available')" 2>/dev/null && rg -n "device_buffer" --type=pyx --type=pxd | grep -E "(class|cdef)" | head -20

Repository: NVIDIA/cuopt

Length of output: 117


🏁 Script executed:

# Check how device_buffer is declared in another .pxd file
cat -n python/cuopt/cuopt/distance_engine/waypoint_matrix.pxd | grep -A5 -B5 "device_buffer"

Repository: NVIDIA/cuopt

Length of output: 958


🏁 Script executed:

# Check routing_utilities.pxd as well
cat -n python/cuopt/cuopt/routing/structure/routing_utilities.pxd | grep -A5 -B5 "device_buffer"

Repository: NVIDIA/cuopt

Length of output: 2727


🏁 Script executed:

# Check if the solver.pxd pattern of having both cimport AND extern declaration is intentional
# by examining the actual C++ header that's being included
rg -n "class device_buffer" --type=cpp --type=hpp

Repository: NVIDIA/cuopt

Length of output: 83


Remove redundant device_buffer declaration on lines 128-130.

Line 16 already imports device_buffer from rmm.librmm.device_buffer via Cython's cimport statement. The cdef extern from block redeclaring it from the C++ header is redundant and inconsistent with the pattern used in other .pxd files in the codebase (e.g., waypoint_matrix.pxd, routing_utilities.pxd). This redundancy can cause symbol conflicts during compilation.

Delete lines 128-130 and rely solely on the import on line 16.

🤖 Prompt for AI Agents
In `@python/cuopt/cuopt/linear_programming/solver/solver.pxd` around lines 128 -
130, Remove the redundant C++ redeclaration of device_buffer: delete the entire
cdef extern from "<rmm/device_buffer.hpp>" namespace "rmm": block that defines
cppclass device_buffer and rely on the existing cimport of device_buffer (from
rmm.librmm.device_buffer on line 16) so there is a single consistent declaration
across .pxd files and no symbol conflicts.

Copy link

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 4

🤖 Fix all issues with AI agents
In `@cpp/src/linear_programming/cpu_optimization_problem.cpp`:
- Around line 638-644: The code only writes variable_upper_bounds_ when
variable_lower_bounds_ is non-empty; change the guards so each bound array is
checked independently: call data_model_view.set_variable_lower_bounds(...)
inside an if (!variable_lower_bounds_.empty()) block and call
data_model_view.set_variable_upper_bounds(...) inside a separate if
(!variable_upper_bounds_.empty()) block, referencing the existing symbols
variable_lower_bounds_, variable_upper_bounds_, and
data_model_view.set_variable_lower_bounds /
data_model_view.set_variable_upper_bounds to locate and update the logic.
- Around line 90-107: The parameter validate_positive_semi_definite on
cpu_optimization_problem_t<i_t,f_t>::set_quadratic_objective_matrix is currently
ignored; either implement PSD validation or explicitly mark it unused and
document the decision — to be minimal, add a single-line use
(void)validate_positive_semi_definite; plus a short comment inside
set_quadratic_objective_matrix noting the CPU backend does not perform PSD
validation (or alternatively implement a PSD check by converting
Q_values/Q_indices/Q_offsets to a dense symmetric matrix and verifying
non-negative eigenvalues via a helper like
validate_matrix_positive_semi_definite and call it from
set_quadratic_objective_matrix).
- Line 30: Remove the debug stderr print from the cpu_optimization_problem_t
constructor (the fprintf(stderr, ...) call) and either delete it or replace it
with the project's logging macro/function from <utilities/logger.hpp> (use the
appropriate debug/info logger such as LOG_DEBUG or equivalent) so construction
no longer writes to stderr; locate the call inside the
cpu_optimization_problem_t constructor in cpu_optimization_problem.cpp and
update it accordingly.
- Around line 43-60: The CPU setter
cpu_optimization_problem_t::set_csr_constraint_matrix currently dereferences
A_values/A_indices/A_offsets without null checks; add cuopt_expects-style
validations so that when size_values>0 you assert A_values != nullptr, when
size_indices>0 assert A_indices != nullptr, and when size_offsets>0 assert
A_offsets != nullptr (mirror the GPU optimization_problem_t checks), then
proceed to resize/copy; apply the same pattern to set_constraint_bounds,
set_objective_coefficients, and set_quadratic_objective_matrix for their
pointer/size pairs; finally address the unused validate_positive_semi_definite
parameter on set_quadratic_objective_matrix by either removing it or
implementing the intended validation branch (choose one and make the
signature/implementation consistent).
🧹 Nitpick comments (1)
cpp/src/linear_programming/cpu_optimization_problem.cpp (1)

749-761: Consider using relative tolerance for large-magnitude values.

The hardcoded 1e-9 absolute tolerance works for typical problem values but may cause false negatives for very large coefficients (e.g., comparing 1e12 vs 1e12 + 1e-9 would incorrectly pass, while 1e12 vs 1e12 * (1 + 1e-15) might incorrectly fail). For MPS roundtrip testing this is likely acceptable, but a combined relative/absolute tolerance would be more robust.

cpu_optimization_problem_t<i_t, f_t>::cpu_optimization_problem_t(raft::handle_t const* handle_ptr)
: handle_ptr_(handle_ptr)
{
fprintf(stderr, "cpu_optimization_problem_t constructor: Using CPU backend\n");
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟡 Minor

Remove debug print statement from constructor.

This fprintf(stderr, ...) will output to stderr on every object construction, polluting user output. Since <utilities/logger.hpp> is already included, use the project's logging facility instead, or remove this debug statement entirely for production code.

🧹 Proposed fix
 cpu_optimization_problem_t<i_t, f_t>::cpu_optimization_problem_t(raft::handle_t const* handle_ptr)
   : handle_ptr_(handle_ptr)
 {
-  fprintf(stderr, "cpu_optimization_problem_t constructor: Using CPU backend\n");
 }
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
fprintf(stderr, "cpu_optimization_problem_t constructor: Using CPU backend\n");
cpu_optimization_problem_t<i_t, f_t>::cpu_optimization_problem_t(raft::handle_t const* handle_ptr)
: handle_ptr_(handle_ptr)
{
}
🤖 Prompt for AI Agents
In `@cpp/src/linear_programming/cpu_optimization_problem.cpp` at line 30, Remove
the debug stderr print from the cpu_optimization_problem_t constructor (the
fprintf(stderr, ...) call) and either delete it or replace it with the project's
logging macro/function from <utilities/logger.hpp> (use the appropriate
debug/info logger such as LOG_DEBUG or equivalent) so construction no longer
writes to stderr; locate the call inside the cpu_optimization_problem_t
constructor in cpu_optimization_problem.cpp and update it accordingly.

Comment on lines +43 to +60
template <typename i_t, typename f_t>
void cpu_optimization_problem_t<i_t, f_t>::set_csr_constraint_matrix(const f_t* A_values,
i_t size_values,
const i_t* A_indices,
i_t size_indices,
const i_t* A_offsets,
i_t size_offsets)
{
n_constraints_ = size_offsets - 1;

A_.resize(size_values);
A_indices_.resize(size_indices);
A_offsets_.resize(size_offsets);

std::copy(A_values, A_values + size_values, A_.begin());
std::copy(A_indices, A_indices + size_indices, A_indices_.begin());
std::copy(A_offsets, A_offsets + size_offsets, A_offsets_.begin());
}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🔴 Critical

🧩 Analysis chain

🏁 Script executed:

# First, find the actual file and examine the full implementation
cd /tmp
find . -name "cpu_optimization_problem.cpp" -o -name "cpu_optimization_problem.hpp" 2>/dev/null | head -20

Repository: NVIDIA/cuopt

Length of output: 38


🏁 Script executed:

# Search for the file in the repository
git ls-files | grep -E "(cpu_optimization_problem|optimization_problem)" | head -20

Repository: NVIDIA/cuopt

Length of output: 719


🏁 Script executed:

# Check how set_csr_constraint_matrix is called
rg "set_csr_constraint_matrix" -A 3 -B 3 --type cpp --type cu

Repository: NVIDIA/cuopt

Length of output: 82


🏁 Script executed:

# Examine the full implementation of the cpu_optimization_problem class
fd "cpu_optimization_problem" --type f

Repository: NVIDIA/cuopt

Length of output: 186


🏁 Script executed:

# Search for calls to set_csr_constraint_matrix without specifying cu type
rg "set_csr_constraint_matrix" -A 3 -B 3 --type cpp

Repository: NVIDIA/cuopt

Length of output: 16177


🏁 Script executed:

# Read the implementation file to see current state
cat -n cpp/src/linear_programming/cpu_optimization_problem.cpp | head -100

Repository: NVIDIA/cuopt

Length of output: 4013


🏁 Script executed:

# Find and read the header file
fd "cpu_optimization_problem" -e hpp

Repository: NVIDIA/cuopt

Length of output: 130


🏁 Script executed:

# Read the header file
cat cpp/include/cuopt/linear_programming/cpu_optimization_problem.hpp | head -150

Repository: NVIDIA/cuopt

Length of output: 153


🏁 Script executed:

# Look for the actual header file with correct search
fd "cpu_optimization_problem" -e hpp -e h | head -20

Repository: NVIDIA/cuopt

Length of output: 130


🏁 Script executed:

# Examine more of the cpp file, especially around set_quadratic_objective_matrix
cat -n cpp/src/linear_programming/cpu_optimization_problem.cpp | sed -n '90,110p'

Repository: NVIDIA/cuopt

Length of output: 908


🏁 Script executed:

# Check cuopt_c.cpp to see how it validates inputs before calling set_csr_constraint_matrix
rg -n "set_csr_constraint_matrix" -B 15 -A 5 cpp/src/linear_programming/cuopt_c.cpp | head -80

Repository: NVIDIA/cuopt

Length of output: 4964


🏁 Script executed:

# Look at optimization_problem_utils to understand the safe usage patterns
rg -n "set_csr_constraint_matrix" -B 5 -A 5 cpp/include/cuopt/linear_programming/optimization_problem_utils.hpp

Repository: NVIDIA/cuopt

Length of output: 1563


🏁 Script executed:

# Check other setters in cpu_optimization_problem.cpp for validation patterns
cat -n cpp/src/linear_programming/cpu_optimization_problem.cpp | sed -n '62,90p'

Repository: NVIDIA/cuopt

Length of output: 1070


🏁 Script executed:

# Check if optimization_problem.cu (GPU version) has validation
rg "set_csr_constraint_matrix" -A 10 cpp/src/linear_programming/optimization_problem.cu | head -40

Repository: NVIDIA/cuopt

Length of output: 1744


🏁 Script executed:

# Check if other public setters in the C++ interface validate
rg "set_variable_lower_bounds|set_constraint_bounds|set_objective_coefficients" -A 5 cpp/src/linear_programming/cpu_optimization_problem.cpp | head -50

Repository: NVIDIA/cuopt

Length of output: 1822


🏁 Script executed:

# Verify the validate_positive_semi_definite parameter is ignored
rg "validate_positive_semi_definite" cpp/src/linear_programming/cpu_optimization_problem.cpp

Repository: NVIDIA/cuopt

Length of output: 95


🏁 Script executed:

# Check which class is actually used as the public API - check cpp/include headers
rg "class optimization_problem_t" -A 5 cpp/include/cuopt/linear_programming/optimization_problem.hpp | head -30

Repository: NVIDIA/cuopt

Length of output: 450


🏁 Script executed:

# Check the interface class to understand the design
cat -n cpp/include/cuopt/linear_programming/optimization_problem_interface.hpp | sed -n '1,100p'

Repository: NVIDIA/cuopt

Length of output: 4452


🏁 Script executed:

# Verify: does optimization_problem_t in optimization_problem.cu actually check A_indices and A_offsets too?
rg "set_csr_constraint_matrix" -A 20 cpp/src/linear_programming/optimization_problem.cu | grep -A 20 "^cpp"

Repository: NVIDIA/cuopt

Length of output: 38


🏁 Script executed:

# Check when this code was added - was cpu version ever meant to be production?
git log --oneline --follow cpp/src/linear_programming/cpu_optimization_problem.cpp | head -10

Repository: NVIDIA/cuopt

Length of output: 134


🏁 Script executed:

# Check if A_indices and A_offsets are also validated in GPU version
rg "set_csr_constraint_matrix" -A 30 cpp/src/linear_programming/optimization_problem.cu | head -50

Repository: NVIDIA/cuopt

Length of output: 2144


🏁 Script executed:

# Verify the validate_positive_semi_definite is also ignored in GPU version
rg "set_quadratic_objective_matrix" -A 20 cpp/src/linear_programming/optimization_problem.cu | grep -A 15 "validate_positive"

Repository: NVIDIA/cuopt

Length of output: 566


🏁 Script executed:

# Check if there's documentation about intended use of cpu_optimization_problem_t
rg -i "cpu_optimization_problem" cpp/include/ | head -20

Repository: NVIDIA/cuopt

Length of output: 727


Add null pointer validation matching the GPU implementation.

The GPU implementation (optimization_problem_t in optimization_problem.cu) validates pointer arguments using cuopt_expects(), but the CPU implementation lacks these checks. All three pointers (A_values, A_indices, A_offsets) can be dereferenced without validation, creating inconsistency across implementations of the same interface.

Update set_csr_constraint_matrix and other setters to match the GPU validation pattern:

  • Check A_values, A_indices, A_offsets for nullptr when their respective sizes > 0
  • Apply same pattern to set_constraint_bounds, set_objective_coefficients, and set_quadratic_objective_matrix

Additionally, the validate_positive_semi_definite parameter in set_quadratic_objective_matrix is accepted but never used; clarify intent or remove it.

🤖 Prompt for AI Agents
In `@cpp/src/linear_programming/cpu_optimization_problem.cpp` around lines 43 -
60, The CPU setter cpu_optimization_problem_t::set_csr_constraint_matrix
currently dereferences A_values/A_indices/A_offsets without null checks; add
cuopt_expects-style validations so that when size_values>0 you assert A_values
!= nullptr, when size_indices>0 assert A_indices != nullptr, and when
size_offsets>0 assert A_offsets != nullptr (mirror the GPU
optimization_problem_t checks), then proceed to resize/copy; apply the same
pattern to set_constraint_bounds, set_objective_coefficients, and
set_quadratic_objective_matrix for their pointer/size pairs; finally address the
unused validate_positive_semi_definite parameter on
set_quadratic_objective_matrix by either removing it or implementing the
intended validation branch (choose one and make the signature/implementation
consistent).

Comment on lines +90 to +107
template <typename i_t, typename f_t>
void cpu_optimization_problem_t<i_t, f_t>::set_quadratic_objective_matrix(
const f_t* Q_values,
i_t size_values,
const i_t* Q_indices,
i_t size_indices,
const i_t* Q_offsets,
i_t size_offsets,
bool validate_positive_semi_definite)
{
Q_values_.resize(size_values);
Q_indices_.resize(size_indices);
Q_offsets_.resize(size_offsets);

std::copy(Q_values, Q_values + size_values, Q_values_.begin());
std::copy(Q_indices, Q_indices + size_indices, Q_indices_.begin());
std::copy(Q_offsets, Q_offsets + size_offsets, Q_offsets_.begin());
}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟡 Minor

validate_positive_semi_definite parameter is ignored.

The parameter validate_positive_semi_definite is accepted but never used. This could mislead callers who expect PSD validation when setting a quadratic objective. Either implement the validation, document that it's intentionally ignored on the CPU backend, or remove the parameter if validation is never needed here.

📝 Proposed fix: Add documentation or use the parameter
 template <typename i_t, typename f_t>
 void cpu_optimization_problem_t<i_t, f_t>::set_quadratic_objective_matrix(
   const f_t* Q_values,
   i_t size_values,
   const i_t* Q_indices,
   i_t size_indices,
   const i_t* Q_offsets,
   i_t size_offsets,
-  bool validate_positive_semi_definite)
+  [[maybe_unused]] bool validate_positive_semi_definite)
 {
+  // Note: PSD validation is deferred to GPU backend during conversion or remote solve
   Q_values_.resize(size_values);
🤖 Prompt for AI Agents
In `@cpp/src/linear_programming/cpu_optimization_problem.cpp` around lines 90 -
107, The parameter validate_positive_semi_definite on
cpu_optimization_problem_t<i_t,f_t>::set_quadratic_objective_matrix is currently
ignored; either implement PSD validation or explicitly mark it unused and
document the decision — to be minimal, add a single-line use
(void)validate_positive_semi_definite; plus a short comment inside
set_quadratic_objective_matrix noting the CPU backend does not perform PSD
validation (or alternatively implement a PSD check by converting
Q_values/Q_indices/Q_offsets to a dense symmetric matrix and verifying
non-negative eigenvalues via a helper like
validate_matrix_positive_semi_definite and call it from
set_quadratic_objective_matrix).

Comment on lines +638 to +644
// Set variable bounds
if (!variable_lower_bounds_.empty()) {
data_model_view.set_variable_lower_bounds(variable_lower_bounds_.data(),
variable_lower_bounds_.size());
data_model_view.set_variable_upper_bounds(variable_upper_bounds_.data(),
variable_upper_bounds_.size());
}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟠 Major

Variable upper bounds incorrectly guarded by lower bounds check.

The upper bounds are only set when lower bounds are non-empty. If a problem has upper bounds defined but no explicit lower bounds, the upper bounds will not be written to the MPS file. Each bounds array should be checked independently.

🐛 Proposed fix
   // Set variable bounds
   if (!variable_lower_bounds_.empty()) {
     data_model_view.set_variable_lower_bounds(variable_lower_bounds_.data(),
                                               variable_lower_bounds_.size());
+  }
+  if (!variable_upper_bounds_.empty()) {
     data_model_view.set_variable_upper_bounds(variable_upper_bounds_.data(),
                                               variable_upper_bounds_.size());
   }
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
// Set variable bounds
if (!variable_lower_bounds_.empty()) {
data_model_view.set_variable_lower_bounds(variable_lower_bounds_.data(),
variable_lower_bounds_.size());
data_model_view.set_variable_upper_bounds(variable_upper_bounds_.data(),
variable_upper_bounds_.size());
}
// Set variable bounds
if (!variable_lower_bounds_.empty()) {
data_model_view.set_variable_lower_bounds(variable_lower_bounds_.data(),
variable_lower_bounds_.size());
}
if (!variable_upper_bounds_.empty()) {
data_model_view.set_variable_upper_bounds(variable_upper_bounds_.data(),
variable_upper_bounds_.size());
}
🤖 Prompt for AI Agents
In `@cpp/src/linear_programming/cpu_optimization_problem.cpp` around lines 638 -
644, The code only writes variable_upper_bounds_ when variable_lower_bounds_ is
non-empty; change the guards so each bound array is checked independently: call
data_model_view.set_variable_lower_bounds(...) inside an if
(!variable_lower_bounds_.empty()) block and call
data_model_view.set_variable_upper_bounds(...) inside a separate if
(!variable_upper_bounds_.empty()) block, referencing the existing symbols
variable_lower_bounds_, variable_upper_bounds_, and
data_model_view.set_variable_lower_bounds /
data_model_view.set_variable_upper_bounds to locate and update the logic.

@tmckayus tmckayus requested a review from Kh4ster February 1, 2026 21:02
Copy link

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 2

🤖 Fix all issues with AI agents
In `@cpp/include/cuopt/linear_programming/gpu_optimization_problem_solution.hpp`:
- Around line 333-337: The to_gpu_solution(rmm::cuda_stream_view) implementation
currently moves solution_ but is callable on lvalues, enabling a use-after-move;
change its signature to be rvalue-qualified (add &&) so it can only be invoked
on temporaries, and update the base class method declaration in
lp_solution_interface_t to match (rvalue-qualified) so the override remains
valid; ensure the return type stays optimization_problem_solution_t<i_t,f_t> and
that any callers are adjusted to call on rvalues or use std::move if they
deliberately transfer ownership.

In `@cpp/include/cuopt/linear_programming/optimization_problem_utils.hpp`:
- Around line 189-203: When target is CPU but has_gpu_warmstart_view is true and
has_gpu_warmstart_data is false, the code must first populate the GPU warmstart
buffers from the Python view (the same routine used in the GPU backend branch
that fills solver_settings->get_pdlp_settings().get_pdlp_warm_start_data())
before calling convert_to_cpu_warmstart; modify the CPU-target branch (around
the convert_to_cpu_warmstart call) to detect has_gpu_warmstart_view &&
!has_gpu_warmstart_data and invoke the same view-to-warmstart population logic
that the GPU branch uses, then call convert_to_cpu_warmstart(...) and assign to
get_cpu_pdlp_warm_start_data().
🧹 Nitpick comments (1)
cpp/include/cuopt/linear_programming/gpu_optimization_problem_solution.hpp (1)

59-64: const_cast usage indicates underlying API const-correctness issue.

The get_reduced_cost_size() method casts away const to call get_reduced_cost(). This pattern repeats throughout the class (lines 99-100, 146-150, 154-156, 162-163, etc.). While functional, this suggests optimization_problem_solution_t::get_reduced_cost() and get_pdlp_warm_start_data() should be const-qualified in the underlying class.

Consider marking get_reduced_cost() and get_pdlp_warm_start_data() as const in optimization_problem_solution_t to eliminate the need for const_cast throughout this wrapper.

Comment on lines +333 to +337
optimization_problem_solution_t<i_t, f_t> to_gpu_solution(rmm::cuda_stream_view) override
{
// Already GPU, just move
return std::move(solution_);
}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟡 Minor

to_gpu_solution() should be rvalue-qualified to prevent use-after-move.

This method moves solution_ and returns it, leaving the wrapper in an invalid state. However, unlike to_linear_programming_ret_t() (line 343) which is rvalue-qualified (&&), this method can be called on lvalues. Subsequent access to the wrapper after calling to_gpu_solution() would be undefined behavior.

🛠️ Proposed fix
-  optimization_problem_solution_t<i_t, f_t> to_gpu_solution(rmm::cuda_stream_view) override
+  optimization_problem_solution_t<i_t, f_t> to_gpu_solution(rmm::cuda_stream_view) && override
   {
     // Already GPU, just move
     return std::move(solution_);
   }

Note: This requires updating the base class interface lp_solution_interface_t to declare the method as rvalue-qualified as well.

🤖 Prompt for AI Agents
In `@cpp/include/cuopt/linear_programming/gpu_optimization_problem_solution.hpp`
around lines 333 - 337, The to_gpu_solution(rmm::cuda_stream_view)
implementation currently moves solution_ but is callable on lvalues, enabling a
use-after-move; change its signature to be rvalue-qualified (add &&) so it can
only be invoked on temporaries, and update the base class method declaration in
lp_solution_interface_t to match (rvalue-qualified) so the override remains
valid; ensure the return type stays optimization_problem_solution_t<i_t,f_t> and
that any callers are adjusted to call on rvalues or use std::move if they
deliberately transfer ownership.

Comment on lines +189 to +203
} else {
// Target is CPU backend (remote execution)
if (has_cpu_warmstart) {
// CPU warmstart → CPU backend: data already in correct form, nothing to do
} else {
// GPU warmstart → CPU backend: convert D2H
// Note: This requires a valid CUDA stream even though target is CPU
// Use rmm::cuda_stream_per_thread for the conversion
cpu_pdlp_warm_start_data_t<i_t, f_t> cpu_warmstart = convert_to_cpu_warmstart(
solver_settings->get_pdlp_settings().get_pdlp_warm_start_data(),
rmm::cuda_stream_per_thread);
solver_settings->get_pdlp_settings().get_cpu_pdlp_warm_start_data() =
std::move(cpu_warmstart);
}
}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟠 Major

GPU→CPU warmstart conversion may access unpopulated data.

When has_gpu_warmstart_view is true but has_gpu_warmstart_data is false, and the target is CPU backend, the code at lines 197-199 calls convert_to_cpu_warmstart(solver_settings->get_pdlp_settings().get_pdlp_warm_start_data(), ...). However, the pdlp_warm_start_data hasn't been populated from the view yet—that only happens in the GPU backend branch (lines 176-178).

This means the D2H conversion would operate on empty/uninitialized data when warmstart originates from a Python view but the solve target is remote/CPU.

🛠️ Proposed fix
       } else {
         // Target is CPU backend (remote execution)
         if (has_cpu_warmstart) {
           // CPU warmstart → CPU backend: data already in correct form, nothing to do
-        } else {
+        } else if (has_gpu_warmstart_data) {
           // GPU warmstart → CPU backend: convert D2H
           // Note: This requires a valid CUDA stream even though target is CPU
           // Use rmm::cuda_stream_per_thread for the conversion
           cpu_pdlp_warm_start_data_t<i_t, f_t> cpu_warmstart = convert_to_cpu_warmstart(
             solver_settings->get_pdlp_settings().get_pdlp_warm_start_data(),
             rmm::cuda_stream_per_thread);
           solver_settings->get_pdlp_settings().get_cpu_pdlp_warm_start_data() =
             std::move(cpu_warmstart);
+        } else if (has_gpu_warmstart_view) {
+          // GPU warmstart view → CPU backend: first materialize to device_uvector, then D2H
+          pdlp_warm_start_data_t<i_t, f_t> gpu_warmstart(
+            solver_settings->get_pdlp_warm_start_data_view(), rmm::cuda_stream_per_thread);
+          cpu_pdlp_warm_start_data_t<i_t, f_t> cpu_warmstart = convert_to_cpu_warmstart(
+            gpu_warmstart, rmm::cuda_stream_per_thread);
+          solver_settings->get_pdlp_settings().get_cpu_pdlp_warm_start_data() =
+            std::move(cpu_warmstart);
         }
       }
🤖 Prompt for AI Agents
In `@cpp/include/cuopt/linear_programming/optimization_problem_utils.hpp` around
lines 189 - 203, When target is CPU but has_gpu_warmstart_view is true and
has_gpu_warmstart_data is false, the code must first populate the GPU warmstart
buffers from the Python view (the same routine used in the GPU backend branch
that fills solver_settings->get_pdlp_settings().get_pdlp_warm_start_data())
before calling convert_to_cpu_warmstart; modify the CPU-target branch (around
the convert_to_cpu_warmstart call) to detect has_gpu_warmstart_view &&
!has_gpu_warmstart_data and invoke the same view-to-warmstart population logic
that the GPU branch uses, then call convert_to_cpu_warmstart(...) and assign to
get_cpu_pdlp_warm_start_data().

Copy link

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 4

Caution

Some comments are outside the diff and can’t be posted inline due to platform limitations.

⚠️ Outside diff range comments (1)
cpp/src/linear_programming/cuopt_c.cpp (1)

48-71: ⚠️ Potential issue | 🟠 Major

Ensure exception safety in cuOptReadProblem.

populate_from_mps_data_model(...) is outside the try/catch; if it throws, the exception crosses the C ABI and problem_and_stream leaks. Wrap the populate call and clean up on failure.

🛡️ Suggested fix
-  // Populate interface directly from MPS data model (avoids temporary GPU allocation)
-  populate_from_mps_data_model(problem_and_stream->get_problem(), *mps_data_model_ptr);
+  try {
+    // Populate interface directly from MPS data model (avoids temporary GPU allocation)
+    populate_from_mps_data_model(problem_and_stream->get_problem(), *mps_data_model_ptr);
+  } catch (const std::exception& e) {
+    CUOPT_LOG_INFO("Error populating problem data: %s", e.what());
+    delete problem_and_stream;
+    *problem_ptr = nullptr;
+    return CUOPT_INVALID_ARGUMENT;
+  }

As per coding guidelines “Check for unclosed file handles when reading MPS/QPS problem files; ensure RAII patterns or proper cleanup in exception paths.”

🤖 Fix all issues with AI agents
In `@cpp/src/linear_programming/cpu_optimization_problem.cpp`:
- Around line 52-56: The code computes n_constraints_ = size_offsets - 1 without
guarding for size_offsets == 0, which underflows and leaves the CSR arrays (A_,
A_indices_, A_offsets_) in an invalid state; update the beginning of the block
around n_constraints_ to validate size_offsets and either return/throw on zero
(or set n_constraints_ to 0 and clear the CSR vectors) before resizing A_,
A_indices_, and A_offsets_, ensuring any downstream logic sees a consistent
empty CSR state; reference n_constraints_, size_offsets, A_, A_indices_, and
A_offsets_ when applying the guard.

In `@cpp/src/linear_programming/gpu_optimization_problem.cu`:
- Around line 711-716: The current block only writes both bounds when
variable_lower_bounds is non-empty, causing valid upper-only bounds to be
dropped; change the logic so you call
data_model_view.set_variable_lower_bounds(...) only if variable_lower_bounds is
non-empty and call data_model_view.set_variable_upper_bounds(...) independently
if variable_upper_bounds is non-empty (i.e., check variable_upper_bounds.empty()
separately and invoke set_variable_upper_bounds when present), leaving the two
calls decoupled.

In `@cpp/src/linear_programming/solve.cu`:
- Around line 1338-1366: The remote-vs-local routing currently only checks
is_remote_execution_enabled(), ignoring the configured
backend/CUOPT_USE_GPU_MEM; update the branch in solve_lp to first respect
get_backend_type()/CUOPT_USE_GPU_MEM (or check backend_type_t::GPU) so that if
the backend is GPU we force local solve (call solve_lp<i_t,f_t> path) and only
route to problem_interface->solve_lp_remote(settings) when remote is enabled AND
the backend is CPU; make the analogous change in solve_mip to ensure backend
selection overrides remote routing (use symbols is_remote_execution_enabled(),
get_backend_type(), CUOPT_USE_GPU_MEM, solve_lp, solve_mip, and
problem_interface->solve_lp_remote to locate code).

In `@cpp/src/linear_programming/utilities/cython_solve.cu`:
- Around line 249-263: call_solve currently mutates the shared warm-start object
returned by solver_settings->get_pdlp_settings().get_pdlp_warm_start_data(),
causing data races when call_batch_solve runs call_solve in parallel; fix by
ensuring each thread uses its own warm-start instance or by serializing the
stream-reset: either (A) clone the warm-start data at the start of call_solve
(create a local copy of warmstart_data and call set_stream on that copy) so
per-thread state is mutated, or (B) wrap the set_stream sequence (the block
touching current_primal_solution_, current_dual_solution_,
initial_primal_average_, initial_dual_average_, current_ATY_,
sum_primal_solutions_, sum_dual_solutions_,
last_restart_duality_gap_primal_solution_,
last_restart_duality_gap_dual_solution_) in a mutex held by
call_batch_solve/call_solve to prevent concurrent mutations; choose the
per-thread copy approach if you want concurrent solves, and ensure any copies
preserve device memory semantics (deep copy or move) when implementing.

Comment on lines +52 to +56
n_constraints_ = size_offsets - 1;

A_.resize(size_values);
A_indices_.resize(size_indices);
A_offsets_.resize(size_offsets);
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟠 Major

Guard size_offsets before computing n_constraints_.
Line 52 underflows when size_offsets == 0, leaving invalid CSR state. Add a guard/early return or throw.

🐛 Suggested guard
-  n_constraints_ = size_offsets - 1;
+  if (size_offsets == 0) {
+    n_constraints_ = 0;
+    A_.clear();
+    A_indices_.clear();
+    A_offsets_.clear();
+    return;
+  }
+  n_constraints_ = size_offsets - 1;
🤖 Prompt for AI Agents
In `@cpp/src/linear_programming/cpu_optimization_problem.cpp` around lines 52 -
56, The code computes n_constraints_ = size_offsets - 1 without guarding for
size_offsets == 0, which underflows and leaves the CSR arrays (A_, A_indices_,
A_offsets_) in an invalid state; update the beginning of the block around
n_constraints_ to validate size_offsets and either return/throw on zero (or set
n_constraints_ to 0 and clear the CSR vectors) before resizing A_, A_indices_,
and A_offsets_, ensuring any downstream logic sees a consistent empty CSR state;
reference n_constraints_, size_offsets, A_, A_indices_, and A_offsets_ when
applying the guard.

Comment on lines +711 to +716
if (!variable_lower_bounds.empty()) {
data_model_view.set_variable_lower_bounds(variable_lower_bounds.data(),
variable_lower_bounds.size());
data_model_view.set_variable_upper_bounds(variable_upper_bounds.data(),
variable_upper_bounds.size());
}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟠 Major

Write upper bounds even when lower bounds are absent.
Upper bounds are only set when lower bounds exist; this drops valid upper-only bounds.

🐛 Proposed fix
   if (!variable_lower_bounds.empty()) {
     data_model_view.set_variable_lower_bounds(variable_lower_bounds.data(),
                                               variable_lower_bounds.size());
-    data_model_view.set_variable_upper_bounds(variable_upper_bounds.data(),
-                                              variable_upper_bounds.size());
   }
+  if (!variable_upper_bounds.empty()) {
+    data_model_view.set_variable_upper_bounds(variable_upper_bounds.data(),
+                                              variable_upper_bounds.size());
+  }
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
if (!variable_lower_bounds.empty()) {
data_model_view.set_variable_lower_bounds(variable_lower_bounds.data(),
variable_lower_bounds.size());
data_model_view.set_variable_upper_bounds(variable_upper_bounds.data(),
variable_upper_bounds.size());
}
if (!variable_lower_bounds.empty()) {
data_model_view.set_variable_lower_bounds(variable_lower_bounds.data(),
variable_lower_bounds.size());
}
if (!variable_upper_bounds.empty()) {
data_model_view.set_variable_upper_bounds(variable_upper_bounds.data(),
variable_upper_bounds.size());
}
🤖 Prompt for AI Agents
In `@cpp/src/linear_programming/gpu_optimization_problem.cu` around lines 711 -
716, The current block only writes both bounds when variable_lower_bounds is
non-empty, causing valid upper-only bounds to be dropped; change the logic so
you call data_model_view.set_variable_lower_bounds(...) only if
variable_lower_bounds is non-empty and call
data_model_view.set_variable_upper_bounds(...) independently if
variable_upper_bounds is non-empty (i.e., check variable_upper_bounds.empty()
separately and invoke set_variable_upper_bounds when present), leaving the two
calls decoupled.

Comment on lines +1338 to +1366
// Check if remote execution is enabled
if (is_remote_execution_enabled()) {
CUOPT_LOG_INFO("Remote LP solve requested");
return problem_interface->solve_lp_remote(settings);
} else {
// Local execution - convert to optimization_problem_t and call original solve_lp
CUOPT_LOG_INFO("Local LP solve");

// NOTE: We could theoretically allocate GPU resources here for a CPU problem,
// but we are not currently supporting local solve of a problem that has been
// built on the CPU. CPU problems are intended for remote execution only.
// If local solving is needed, create the problem with GPU backend from the start.
auto* cpu_prob = dynamic_cast<cpu_optimization_problem_t<i_t, f_t>*>(problem_interface);
if (cpu_prob != nullptr) {
CUOPT_LOG_ERROR("Attempted local solve of CPU-backed problem without CUDA resources");
throw cuopt::logic_error(
"Local solve of CPU-backed problems is not supported. "
"CPU problems are intended for remote execution only. "
"For local solving, create the problem with GPU backend (CUOPT_USE_GPU_MEM=true).",
cuopt::error_type_t::ValidationError);
}

auto op_problem = problem_interface->to_optimization_problem();
auto gpu_solution = solve_lp<i_t, f_t>(
op_problem, settings, problem_checking, use_pdlp_solver_mode, is_batch_mode);

// Wrap GPU solution in interface and return
return std::make_unique<gpu_lp_solution_t<i_t, f_t>>(std::move(gpu_solution));
}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟠 Major

Respect CUOPT_USE_GPU_MEM when deciding remote vs. local solve.

solve_lp/solve_mip only checks is_remote_execution_enabled(), so a user who sets CUOPT_USE_GPU_MEM=true still gets remote routing if remote env vars are present. This conflicts with get_backend_type() and makes the override ineffective.

🔧 Suggested fix (align with backend selection)
-  if (is_remote_execution_enabled()) {
+  if (is_remote_execution_enabled() && !force_gpu_memory()) {
     CUOPT_LOG_INFO("Remote LP solve requested");
     return problem_interface->solve_lp_remote(settings);
   } else {

(Apply the same change in solve_mip.)

Also applies to: 1374-1401

🤖 Prompt for AI Agents
In `@cpp/src/linear_programming/solve.cu` around lines 1338 - 1366, The
remote-vs-local routing currently only checks is_remote_execution_enabled(),
ignoring the configured backend/CUOPT_USE_GPU_MEM; update the branch in solve_lp
to first respect get_backend_type()/CUOPT_USE_GPU_MEM (or check
backend_type_t::GPU) so that if the backend is GPU we force local solve (call
solve_lp<i_t,f_t> path) and only route to
problem_interface->solve_lp_remote(settings) when remote is enabled AND the
backend is CPU; make the analogous change in solve_mip to ensure backend
selection overrides remote routing (use symbols is_remote_execution_enabled(),
get_backend_type(), CUOPT_USE_GPU_MEM, solve_lp, solve_mip, and
problem_interface->solve_lp_remote to locate code).

Comment on lines +249 to +263
// Reset warmstart data streams in solver_settings
auto& warmstart_data = solver_settings->get_pdlp_settings().get_pdlp_warm_start_data();
if (warmstart_data.current_primal_solution_.size() > 0) {
warmstart_data.current_primal_solution_.set_stream(rmm::cuda_stream_per_thread);
warmstart_data.current_dual_solution_.set_stream(rmm::cuda_stream_per_thread);
warmstart_data.initial_primal_average_.set_stream(rmm::cuda_stream_per_thread);
warmstart_data.initial_dual_average_.set_stream(rmm::cuda_stream_per_thread);
warmstart_data.current_ATY_.set_stream(rmm::cuda_stream_per_thread);
warmstart_data.sum_primal_solutions_.set_stream(rmm::cuda_stream_per_thread);
warmstart_data.sum_dual_solutions_.set_stream(rmm::cuda_stream_per_thread);
warmstart_data.last_restart_duality_gap_primal_solution_.set_stream(
rmm::cuda_stream_per_thread);
warmstart_data.last_restart_duality_gap_dual_solution_.set_stream(
rmm::cuda_stream_per_thread);
}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟠 Major

Avoid data races on shared warm‑start data in batch mode.

call_batch_solve executes call_solve in parallel while call_solve mutates solver_settings->get_pdlp_settings().get_pdlp_warm_start_data(). This is a shared object and can lead to data races/UB in batch mode. Consider guarding this mutation or using per-thread settings.

🔧 Minimal guard to avoid cross‑thread mutation
-  // Reset warmstart data streams in solver_settings
-  auto& warmstart_data = solver_settings->get_pdlp_settings().get_pdlp_warm_start_data();
-  if (warmstart_data.current_primal_solution_.size() > 0) {
-    warmstart_data.current_primal_solution_.set_stream(rmm::cuda_stream_per_thread);
-    warmstart_data.current_dual_solution_.set_stream(rmm::cuda_stream_per_thread);
-    warmstart_data.initial_primal_average_.set_stream(rmm::cuda_stream_per_thread);
-    warmstart_data.initial_dual_average_.set_stream(rmm::cuda_stream_per_thread);
-    warmstart_data.current_ATY_.set_stream(rmm::cuda_stream_per_thread);
-    warmstart_data.sum_primal_solutions_.set_stream(rmm::cuda_stream_per_thread);
-    warmstart_data.sum_dual_solutions_.set_stream(rmm::cuda_stream_per_thread);
-    warmstart_data.last_restart_duality_gap_primal_solution_.set_stream(
-      rmm::cuda_stream_per_thread);
-    warmstart_data.last_restart_duality_gap_dual_solution_.set_stream(
-      rmm::cuda_stream_per_thread);
-  }
+  // Reset warmstart data streams in solver_settings (avoid cross-thread mutation in batch mode)
+  if (!is_batch_mode) {
+    auto& warmstart_data = solver_settings->get_pdlp_settings().get_pdlp_warm_start_data();
+    if (warmstart_data.current_primal_solution_.size() > 0) {
+      warmstart_data.current_primal_solution_.set_stream(rmm::cuda_stream_per_thread);
+      warmstart_data.current_dual_solution_.set_stream(rmm::cuda_stream_per_thread);
+      warmstart_data.initial_primal_average_.set_stream(rmm::cuda_stream_per_thread);
+      warmstart_data.initial_dual_average_.set_stream(rmm::cuda_stream_per_thread);
+      warmstart_data.current_ATY_.set_stream(rmm::cuda_stream_per_thread);
+      warmstart_data.sum_primal_solutions_.set_stream(rmm::cuda_stream_per_thread);
+      warmstart_data.sum_dual_solutions_.set_stream(rmm::cuda_stream_per_thread);
+      warmstart_data.last_restart_duality_gap_primal_solution_.set_stream(
+        rmm::cuda_stream_per_thread);
+      warmstart_data.last_restart_duality_gap_dual_solution_.set_stream(
+        rmm::cuda_stream_per_thread);
+    }
+  }

As per coding guidelines “Ensure race conditions are absent in multi‑GPU code and multi‑threaded server implementations; verify proper synchronization of shared state.”

🤖 Prompt for AI Agents
In `@cpp/src/linear_programming/utilities/cython_solve.cu` around lines 249 - 263,
call_solve currently mutates the shared warm-start object returned by
solver_settings->get_pdlp_settings().get_pdlp_warm_start_data(), causing data
races when call_batch_solve runs call_solve in parallel; fix by ensuring each
thread uses its own warm-start instance or by serializing the stream-reset:
either (A) clone the warm-start data at the start of call_solve (create a local
copy of warmstart_data and call set_stream on that copy) so per-thread state is
mutated, or (B) wrap the set_stream sequence (the block touching
current_primal_solution_, current_dual_solution_, initial_primal_average_,
initial_dual_average_, current_ATY_, sum_primal_solutions_, sum_dual_solutions_,
last_restart_duality_gap_primal_solution_,
last_restart_duality_gap_dual_solution_) in a mutex held by
call_batch_solve/call_solve to prevent concurrent mutations; choose the
per-thread copy approach if you want concurrent solves, and ensure any copies
preserve device memory semantics (deep copy or move) when implementing.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

feature request New feature or request non-breaking Introduces a non-breaking change P0

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant