Maximum product of sub-array in C Here, in this page we will discuss the program to find the maximum product of sub-array in C programming language. We will discuss the two different ways to find the maximum product.
maximum product of sub-array in C While loop in C Example Input : arr = [ 10, -20, -30, 0, 70, -80, -20 ] Output : Maximum product sub-array is 112000 Explanation : Sub-array [70, -80, -20] gives the maximum product 112000 Here, we will discuss the following two methods, and compare the complexity of them,
Method 1 : Naive solution Method 2 : Efficient solution Let’s discuss above two methods in brief.
Method 1 : Create a variable say result, set result = arr[0], this variable hold the required maximum product. Run a loop for range(n) Create a variable mul = arr[i], this variable hold the product of sub-array. Run a inner loop, set result = max(result, mul) And, mul *= arr[j] Update, result = max(result, mul) Return result. Time and Space Complexity : Time Complexity : O(n2) Space Complexity : O(1) Related Pages Counting the number of even and odd elements in an array
Find all Symmetric pairs in an array
Finding Arrays are disjoint or not
Determine Array is a subset of another array or not
Determine can all numbers of an array be made equal
Method 1 : Code in C Run #include<stdio.h>
int main(){ int arr[] = { 10, -20, -30, 0, 70, -80, -20 }; int n=sizeof(arr)/sizeof(arr[0]); int result = arr[0];
for (int i = 0; i < n; i++)
{
int mul = arr[i];
// traversing in current subarray
for (int j = i + 1; j < n; j++) { // updating result every time // to keep an eye over the // maximum product if(mul>result)
result = mul;
mul *= arr[j];
}
if(mul>result)
result = mul;
}
printf("Maximum Product of sub-array is %d", result);
} Output Maximum Product of sub-array is 1600 Method 2 : This is the efficient solution and is also similar to Largest Sum Contiguous Subarray problem which uses Kadane’s algorithm.
Declare three variables say max_so_far, max_ending_here & min_ending_here. For every index the maximum number ending at that index will be the maximum(arr[i], max_ending_here * arr[i], min_ending_here[i]*arr[i]). Similarly the minimum number ending here will be the minimum of these 3. Thus we get the final value for maximum product subarray. Time and Space Complexity : Time Complexity : O(n) Space Complexity : O(1) Method 2 : Code in C Run #include<stdio.h>
int max(int a, int b, int c){
if(a>=b && a>=c)
return a;
if(b>=a && b>=a)
return b;
return c;
}
int min(int a, int b, int c){
if(a<=b && a<=c)
return a;
if(b<=a && b<=a)
return b;
return c;
}
int main(){ int arr[] = { 1, -2, -3, 0, 7, -8, 2}; int n=sizeof(arr)/sizeof(arr[0]); int max_ending_here = arr[0];
// min negative product ending
// at the current position
int min_ending_here = arr[0];
// Initialize overall max product
int max_so_far = arr[0];
for (int i = 1; i < n; i++) { int temp = max(arr[i], arr[i] * max_ending_here, arr[i] * min_ending_here); min_ending_here = min(arr[i], arr[i] * max_ending_here, arr[i] * min_ending_here); max_ending_here = temp; //max_so_far = max(max_so_far, max_ending_here); if(max_ending_here>max_so_far)
max_so_far = max_ending_here;
}
printf("Maximum Product of sub-array is %d", max_so_far);
} Output Maximum Product of sub-array is 2