A complete hands-on guide to mastering data analysis in Python — from NumPy and Pandas to data cleaning, data sourcing, and practical projects.
- Overview
- Project Structure
- Learning Roadmap
- Installation
- Usage
- Modules Overview
- Skills You’ll Gain
- Future Improvements
- Contributing
- Author
This repository is a comprehensive Python data analysis learning path designed for beginners and intermediate learners who want to build strong foundations in data science.
Through interactive Jupyter notebooks, you’ll explore:
- 🧮 Numerical computing with NumPy
- 📊 Data manipulation with Pandas
- 🧹 Data cleaning and preprocessing
- 📁 Reading from multiple data sources (CSV, Excel, JSON, APIs)
- 🐍 Python programming recap
- 💡 Real-world practical examples
Each module contains theory, examples, and exercises to help you develop intuition and practical skills in data analysis.
Data-Analysis-with-Python/
│
├── 1- Intro to Numpy/
│ ├── 1. NumPy.ipynb
│ └── 2. NumPy exercises.ipynb
│
├── 2- Intro to Pandas/
│ ├── Pandas Basics.ipynb
│ ├── DataFrames and Series.ipynb
│ ├── Pandas Exercises.ipynb
│ └── README.md
│
├── 3- Intro to Data Cleaning/
│ ├── Missing Values.ipynb
│ ├── Outlier Detection.ipynb
│ ├── Data Transformation.ipynb
│ └── README.md
│
├── 4- Reading From Different Data Source/
│ ├── CSV_Files.ipynb
│ ├── Excel_Files.ipynb
│ ├── JSON_and_APIs.ipynb
│ └── README.md
│
├── 5- Python Recap/
│ ├── Python_Basics.ipynb
│ ├── Functions_and_Loops.ipynb
│ └── README.md
│
├── 6- Practical Examples/
│ ├── Sales_Data_Analysis.ipynb
│ ├── Customer_Data_Insights.ipynb
│ ├── Visualization_with_Matplotlib.ipynb
│ └── README.md
│
├── .gitignore
└── README.md
| Stage | Focus Area | Key Skills |
|---|---|---|
| 1️⃣ | NumPy | Arrays, broadcasting, vectorization |
| 2️⃣ | Pandas | DataFrames, indexing, filtering, grouping |
| 3️⃣ | Data Cleaning | Missing values, outlier detection, transformation |
| 4️⃣ | Data Sources | Reading from CSV, Excel, JSON, and APIs |
| 5️⃣ | Python Recap | Loops, functions, conditionals, list comprehensions |
| 6️⃣ | Practical Examples | Real-world analytics and visualization |
git clone https://github.com/<your-username>/Data-Analysis-with-Python.git
cd Data-Analysis-with-Pythonconda create --name myenv python=3.11
conda activate myenvconda env create --file environment.yml --name newenvRun Jupyter Notebook:
jupyter notebookThen open any module (e.g. 1- Intro to Numpy/2. NumPy.ipynb) and start exploring.
- Learn the basics of data science and numerical computing
- Understand NumPy arrays, vectorization, and matrix operations
- Perform element-wise computations efficiently
📘 Key files:2. NumPy.ipynb,3. NumPy exercises.ipynb
- Explore Series and DataFrames
- Learn indexing, grouping, and aggregation
- Handle missing data and compute statistics
📘 Key files:Pandas Basics.ipynb,Pandas Exercises.ipynb
- Identify and handle missing or inconsistent values
- Detect outliers using IQR and z-score
- Standardize and transform data for analysis
📘 Key files:Missing Values.ipynb,Outlier Detection.ipynb
- Load data from CSV, Excel, JSON, and API endpoints
- Understand data import best practices and performance
📘 Key files:CSV_Files.ipynb,JSON_and_APIs.ipynb
- Review essential Python programming concepts
- Learn about data types, loops, functions, and file handling
📘 Key files:Python_Basics.ipynb,Functions_and_Loops.ipynb
- Real-world scenarios combining all learned skills
- Sales analysis, customer segmentation, and data visualization
📘 Key files:Sales_Data_Analysis.ipynb,Visualization_with_Matplotlib.ipynb
- Data wrangling with Pandas
- Efficient computation with NumPy
- Data cleaning and preprocessing
- Working with structured/unstructured data sources
- Exploratory Data Analysis (EDA)
- Python scripting and visualization
- Add machine learning module using scikit-learn
- Include interactive dashboards (Plotly, Dash)
- Add SQL integration examples
- Integrate with real datasets (Kaggle / APIs)
Contributions are welcome!
If you’d like to improve examples, fix bugs, or add new lessons:
- Fork this repo
- Create a feature branch
- Submit a pull request
Omar Shehab
💼 GitHub: github.com/OmarHeshamShehab