Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
{"raw_content": "../example_data/SpeechTranscription/audio/test.wav"}
{"raw_content": "https://raw.githubusercontent.com/FireRedTeam/FireRedASR/main/examples/wav/IT0011W0001.wav"}
Empty file.
165 changes: 165 additions & 0 deletions dataflow/operators/generate/SpeechTranscription/speech_transcriptor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,165 @@
from dataflow.utils.registry import OPERATOR_REGISTRY
from dataflow import get_logger

from dataflow.utils.storage import DataFlowStorage
from dataflow.core import OperatorABC
from dataflow.core import LLMServingABC

import os
import math
import warnings
import base64
from io import BytesIO
from typing import List, Optional, Union, Dict, Tuple

import librosa
import numpy as np
import requests

# 不重采样
DEFAULT_SR = None

def _read_audio_remote(path: str, sr: Optional[int] = DEFAULT_SR) -> Tuple[np.ndarray, int]:
url = path
resp = requests.get(url, stream=True)

audio_bytes = BytesIO(resp.content)
y, sr = librosa.load(audio_bytes, sr=sr)
return y, sr

def _read_audio_local(path: str, sr: Optional[int] = DEFAULT_SR) -> Tuple[np.ndarray, int]:
return librosa.load(path, sr=sr, mono=True)

def _read_audio_bytes(data: bytes, sr: Optional[int] = DEFAULT_SR) -> Tuple[np.ndarray, int]:
return librosa.load(BytesIO(data), sr=sr, mono=True)

def _read_audio_base64(b64: str, sr: Optional[int] = DEFAULT_SR) -> Tuple[np.ndarray, int]:
header, b64data = b64.split(",", 1)
data = base64.b64decode(b64data)
return _read_audio_bytes(data, sr=sr)

def process_audio_info(
conversations: List[dict] | List[List[dict]], # 这个conversation对应的是vllm中的messages列表(对应的是conversation_to_message函数的message)
sampling_rate: Optional[int]
) -> Tuple[
Optional[List[np.ndarray]],
Optional[List[int]],
Optional[List[str]]
]:
"""
类似于 vision 的 process_vision_info,从 message 列表中提取音频输入。
支持三种格式输入:
- 本地或 http(s) URL 路径(通过 librosa 接口处理)
- base64 编码 (data:audio/…;base64,…)
- 直接传入 bytes 对象
返回二元组:
- audio_arrays: 解码后的 waveform (List[np.ndarray])
- sample_rates: 采样率列表 (List[int])
"""
if isinstance(conversations, list) and conversations and isinstance(conversations[0], dict):
# 单条 conversaion
conversations = [conversations] # conversations被统一为List[List[dict]]

audio_arrays = []
sampling_rates = []

for conv in conversations:
for msg in conv:
if not isinstance(msg.get("content"), list):
continue
for ele in msg["content"]:
if ele.get("type") != "audio":
continue
aud = ele.get("audio")
if isinstance(aud, str):
if aud.startswith("data:audio") and "base64," in aud:
arr, sr = _read_audio_base64(aud, sr=sampling_rate)
audio_arrays.append(arr)
sampling_rates.append(sr)
elif aud.startswith("http://") or aud.startswith("https://"):
# 使用 librosa 支持远程路径
arr, sr = _read_audio_remote(aud, sr=sampling_rate)
audio_arrays.append(arr)
sampling_rates.append(sr)
else:
# 本地路径
arr, sr = _read_audio_local(aud, sr=sampling_rate)
audio_arrays.append(arr)
sampling_rates.append(sr)
elif isinstance(aud, (bytes, bytearray)):
arr, sr = _read_audio_bytes(bytes(aud), sr=sampling_rate)
audio_arrays.append(arr)
sampling_rates.append(sr)
else:
raise ValueError(f"Unsupported audio type: {type(aud)}")

if not audio_arrays:
return None, None
return audio_arrays, sampling_rates

@OPERATOR_REGISTRY.register()
class SpeechTranscriptor(OperatorABC):
def __init__(
self,
llm_serving: LLMServingABC,
system_prompt: str = "You are a helpful assistant",
):
self.logger = get_logger()
self.llm_serving = llm_serving
self.system_prompt = system_prompt

def run(self, storage: DataFlowStorage, input_key: str = "raw_content", output_key: str = "generated_content"):
self.input_key, self.output_key = input_key, output_key
self.logger.info("Running Speech Transcriptor...")

dataframe = storage.read('dataframe')
self.logger.info(f"Loading, number of rows: {len(dataframe)}")

conversations = []
for index, row in dataframe.iterrows():
path_or_url = row.get(self.input_key, '')
conversation = [
{
"role": "system",
"content": self.system_prompt
},
{
"role": "user",
"content": [
{
"type": "audio",
"audio": path_or_url
},
{
"type": "text",
"text": "请把语音转录为中文文本"
}
]
}
]
conversations.append(conversation)

user_inputs = [self.llm_serving.processor.apply_chat_template(
conversation,
tokenize=False,
add_generation_prompt=True,
add_audio_id = True
) for conversation in conversations]
print(user_inputs)


audio_arrays, sampling_rates = process_audio_info(conversations=conversations, sampling_rate=16000)
audio_inputs = [(audio_array, sampling_rate) for audio_array, sampling_rate in zip(audio_arrays, sampling_rates)]

transcriptions = self.llm_serving.generate_from_input(
user_inputs=user_inputs,
audio_inputs=audio_inputs,
system_prompt=self.system_prompt
)

dataframe[self.output_key] = transcriptions
output_file = storage.write(dataframe)
self.logger.info(f"Saving to {output_file}")
self.logger.info("Speech Transcriptor done")

return output_key
3 changes: 3 additions & 0 deletions dataflow/operators/generate/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,9 @@

#VQA
from .VQA.PromptedVQAGenerator import PromptedVQAGenerator

# SpeechTranscription
from .SpeechTranscription.speech_transcriptor import SpeechTranscriptor
else:
import sys
from dataflow.utils.registry import LazyLoader, generate_import_structure_from_type_checking
Expand Down
125 changes: 125 additions & 0 deletions dataflow/serving/LocalModelLALMServing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
import os
import torch
from dataflow import get_logger
from huggingface_hub import snapshot_download
from dataflow.core import LLMServingABC
from transformers import AutoProcessor
from typing import Optional, Union, List, Dict, Any

class LocalModelLALMServing_vllm(LLMServingABC):
'''
A class for generating text using vllm, with model from huggingface or local directory
'''
def __init__(self,
hf_model_name_or_path: str = None,
hf_cache_dir: str = None,
hf_local_dir: str = None,
vllm_tensor_parallel_size: int = 1,
vllm_temperature: float = 0.7,
vllm_top_p: float = 0.9,
vllm_max_tokens: int = 1024,
vllm_top_k: int = 40,
vllm_repetition_penalty: float = 1.0,
vllm_seed: int = 42,
vllm_max_model_len: int = None,
vllm_gpu_memory_utilization: float=0.9,
):

self.load_model(
hf_model_name_or_path=hf_model_name_or_path,
hf_cache_dir=hf_cache_dir,
hf_local_dir=hf_local_dir,
vllm_tensor_parallel_size=vllm_tensor_parallel_size,
vllm_temperature=vllm_temperature,
vllm_top_p=vllm_top_p,
vllm_max_tokens=vllm_max_tokens,
vllm_top_k=vllm_top_k,
vllm_repetition_penalty=vllm_repetition_penalty,
vllm_seed=vllm_seed,
vllm_max_model_len=vllm_max_model_len,
vllm_gpu_memory_utilization=vllm_gpu_memory_utilization,
)

def load_model(self,
hf_model_name_or_path: str = None,
hf_cache_dir: str = None,
hf_local_dir: str = None,
vllm_tensor_parallel_size: int = 1,
vllm_temperature: float = 0.7,
vllm_top_p: float = 0.9,
vllm_max_tokens: int = 1024,
vllm_top_k: int = 40,
vllm_repetition_penalty: float = 1.0,
vllm_seed: int = 42,
vllm_max_model_len: int = None,
vllm_gpu_memory_utilization: float=0.9,
):
self.logger = get_logger()
if hf_model_name_or_path is None:
raise ValueError("hf_model_name_or_path is required")
elif os.path.exists(hf_model_name_or_path):
self.logger.info(f"Using local model path: {hf_model_name_or_path}")
self.real_model_path = hf_model_name_or_path
else:
self.logger.info(f"Downloading model from HuggingFace: {hf_model_name_or_path}")
self.real_model_path = snapshot_download(
repo_id=hf_model_name_or_path,
cache_dir=hf_cache_dir,
local_dir=hf_local_dir,
)
# get the model name from the real_model_path
self.model_name = os.path.basename(self.real_model_path)
self.processor = AutoProcessor.from_pretrained(self.real_model_path, cache_dir=hf_cache_dir)
print(f"Model name: {self.model_name}")


# Import vLLM and set up the environment for multiprocessing
# vLLM requires the multiprocessing method to be set to spawn
try:
from vllm import LLM,SamplingParams
except:
raise ImportError("please install vllm first like 'pip install open-dataflow[vllm]'")
# Set the environment variable for vllm to use spawn method for multiprocessing
# See https://docs.vllm.ai/en/v0.7.1/design/multiprocessing.html
os.environ['VLLM_WORKER_MULTIPROC_METHOD'] = "spawn"

self.sampling_params = SamplingParams(
temperature=vllm_temperature,
top_p=vllm_top_p,
max_tokens=vllm_max_tokens,
top_k=vllm_top_k,
repetition_penalty=vllm_repetition_penalty,
seed=vllm_seed
)

self.llm = LLM(
model=self.real_model_path,
tensor_parallel_size=vllm_tensor_parallel_size,
max_model_len=vllm_max_model_len,
gpu_memory_utilization=vllm_gpu_memory_utilization,
)
self.logger.success(f"Model loaded from {self.real_model_path} by vLLM backend")

def generate_from_input(self,
user_inputs: list[str],
audio_inputs: list,
system_prompt: str = "You are a helpful assistant",
) -> list[str]:


full_prompts = []
for user_input, audio_input in zip(user_inputs, audio_inputs):
full_prompts.append({
'prompt': user_input,
'multi_modal_data': {'audio': audio_input}
})

responses = self.llm.generate(full_prompts, self.sampling_params)
return [output.outputs[0].text for output in responses]

def cleanup(self):
del self.llm
import gc;
gc.collect()
torch.cuda.empty_cache()

4 changes: 3 additions & 1 deletion dataflow/serving/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,13 @@
from .LocalModelLLMServing import LocalModelLLMServing_sglang
from .GoogleAPIServing import PerspectiveAPIServing
from .LiteLLMServing import LiteLLMServing
from .LocalModelLALMServing import LocalModelLALMServing_vllm

__all__ = [
"APILLMServing_request",
"LocalModelLLMServing_vllm",
"LocalModelLLMServing_sglang",
"PerspectiveAPIServing",
"LiteLLMServing"
"LiteLLMServing",
"LocalModelLALMServing_vllm"
]
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
from dataflow.operators.generate.SpeechTranscription.speech_transcriptor import SpeechTranscriptor
from dataflow.serving import LocalModelLALMServing_vllm
from dataflow.utils.storage import FileStorage

class SpeechTranscription_GPUPipeline():
def __init__(self):
self.storage = FileStorage(
first_entry_file_name="../example_data/SpeechTranscription/pipeline_speechtranscription.jsonl",
cache_path="./cache",
file_name_prefix="dataflow_cache_step",
cache_type="jsonl",
)

self.llm_serving = LocalModelLALMServing_vllm(
hf_model_name_or_path='/data0/gty/models/Qwen2-Audio-7B-Instruct',
vllm_tensor_parallel_size=4,
vllm_max_tokens=8192,
)
self.speech_transcriptor = SpeechTranscriptor(
llm_serving = self.llm_serving,
system_prompt="你是一个专业的翻译员,你需要将语音转录为文本。"
)

def forward(self):
self.speech_transcriptor.run(
storage=self.storage.step(),
input_key="raw_content"
)

if __name__ == "__main__":
pipeline = SpeechTranscription_GPUPipeline()
pipeline.forward()
1 change: 1 addition & 0 deletions pyproject.toml
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里改到requirements.txt吧。

Original file line number Diff line number Diff line change
Expand Up @@ -73,3 +73,4 @@ agent = [
"uvicorn",
"sseclient-py",
]
audio = ['librosa', 'soundfile']
4 changes: 4 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -63,3 +63,7 @@ requests
termcolor
uvicorn
sseclient-py

# speech
librosa
soundfile
Loading