Skip to content

How to inference the model with lora? #202

@sterzhang

Description

@sterzhang

RuntimeError: Error(s) in loading state_dict for LlavaLlamaForCausalLM:
size mismatch for model.mm_projector.0.weight: copying a param with shape torch.Size([4096, 1024]) from checkpoint, the shape in current model is torch.Size([2097152, 1]).
size mismatch for model.mm_projector.2.weight: copying a param with shape torch.Size([4096, 4096]) from checkpoint, the shape in current model is torch.Size([8388608, 1]).

Here is the error.

Below is my code:

import torch
from videollava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from videollava.conversation import conv_templates, SeparatorStyle
from videollava.model.builder import load_pretrained_model
from videollava.utils import disable_torch_init
from videollava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria

def main():
    disable_torch_init()
    video = 'videollava/serve/examples/sample_demo_1.mp4'
    inp = 'Why is this video funny?'
    model_path = "./checkpoints/videollava-7b-lora_11_26"
    model_base = 'pretrained_weights/LanguageBind/Video-LLaVA-7B'
    cache_dir = 'cache_dir'
    device = 'cuda'
    load_4bit, load_8bit = True, False
    model_name = get_model_name_from_path(model_path)
    tokenizer, model, processor, _ = load_pretrained_model(model_path, model_base, model_name, load_8bit, load_4bit, device=device, cache_dir=cache_dir)

BTW, I am using finetune_lora.sh as my training script!

Do you know how to solve this issue? Many thanks!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions