-
Notifications
You must be signed in to change notification settings - Fork 660
[xpu] add ep custom ops #3911
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
[xpu] add ep custom ops #3911
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File renamed without changes.
File renamed without changes.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,225 @@ | ||
| // Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. | ||
| // | ||
| // Licensed under the Apache License, Version 2.0 (the "License"); | ||
| // you may not use this file except in compliance with the License. | ||
| // You may obtain a copy of the License at | ||
| // | ||
| // http://www.apache.org/licenses/LICENSE-2.0 | ||
| // | ||
| // Unless required by applicable law or agreed to in writing, software | ||
| // distributed under the License is distributed on an "AS IS" BASIS, | ||
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| // See the License for the specific language governing permissions and | ||
| // limitations under the License. | ||
|
|
||
| #include <infer_ops.h> | ||
| #include <functional> | ||
| #include "paddle/extension.h" | ||
| #include "paddle/phi/backends/xpu/enforce_xpu.h" | ||
| #include "utility/debug.h" | ||
| #include "utility/env.h" | ||
|
|
||
| #ifndef PD_BUILD_STATIC_OP | ||
| #define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name) | ||
| #endif | ||
|
|
||
| XPU_DECLARE_BOOL(ENABLE_XVLLM_SDNN_INFER, false); | ||
| namespace api = baidu::xpu::api; | ||
|
|
||
| template <typename T> | ||
| std::vector<paddle::Tensor> RmsNormKernel( | ||
| const paddle::Tensor& x, | ||
| const paddle::optional<paddle::Tensor>& bias, | ||
| const paddle::optional<paddle::Tensor>& residual, | ||
| const paddle::Tensor& norm_weight, | ||
| const paddle::optional<paddle::Tensor>& norm_bias, | ||
| const float epsilon, | ||
| const int begin_norm_axis, | ||
| const float quant_scale, | ||
| const int quant_round_type, | ||
| const float quant_max_bound, | ||
| const float quant_min_bound) { | ||
| using XPU_T = typename XPUTypeTrait<T>::Type; | ||
| phi::XPUPlace place(phi::backends::xpu::GetXPUCurrentDeviceId()); | ||
| auto dev_ctx = paddle::experimental::DeviceContextPool::Instance().Get(place); | ||
| auto xpu_ctx = static_cast<const phi::XPUContext*>(dev_ctx); | ||
|
|
||
| int ret = -1; | ||
| auto x_shape = x.shape(); | ||
| PD_CHECK(quant_scale <= 0, "Quantization is not supported"); | ||
| PD_CHECK(begin_norm_axis > 0 && begin_norm_axis <= x_shape.size(), | ||
| "begin_norm_axis check fail"); | ||
| PD_CHECK(norm_bias.get_ptr() == nullptr, | ||
| "rms norm kernel don't support norm_bias"); | ||
|
|
||
| int64_t m = std::accumulate(x_shape.begin(), | ||
| x_shape.begin() + begin_norm_axis, | ||
| static_cast<int64_t>(1), | ||
| std::multiplies<int64_t>()); | ||
| int64_t n = std::accumulate(x_shape.begin() + begin_norm_axis, | ||
| x_shape.end(), | ||
| static_cast<int64_t>(1), | ||
| std::multiplies<int64_t>()); | ||
|
|
||
| PD_CHECK(n == norm_weight.shape()[0], | ||
| "The product from begin_norm_axis to the last axis of x must be " | ||
| "equal to the norm_weight's shape[0]"); | ||
| if (bias.get_ptr()) { | ||
| PD_CHECK(n == bias.get_ptr()->shape()[0], | ||
| "The product from begin_norm_axis to the last axis of x must be " | ||
| "equal to the bias's shape[0]"); | ||
| } | ||
|
|
||
| paddle::Tensor out = paddle::empty(x_shape, x.dtype(), x.place()); | ||
| paddle::Tensor residual_out = paddle::empty(x_shape, x.dtype(), x.place()); | ||
| const XPU_T* x_data = reinterpret_cast<const XPU_T*>(x.data<T>()); | ||
| const XPU_T* norm_weight_data = | ||
| reinterpret_cast<const XPU_T*>(norm_weight.data<T>()); | ||
| const XPU_T* bias_data = | ||
| bias.get_ptr() ? reinterpret_cast<const XPU_T*>(bias.get_ptr()->data<T>()) | ||
| : nullptr; | ||
| const XPU_T* residual_data = | ||
| residual.get_ptr() | ||
| ? reinterpret_cast<const XPU_T*>(residual.get_ptr()->data<T>()) | ||
| : nullptr; | ||
| XPU_T* out_data = reinterpret_cast<XPU_T*>(const_cast<T*>(out.data<T>())); | ||
| XPU_T* residual_out_data = nullptr; | ||
| if (residual_data) { | ||
| residual_out_data = | ||
| reinterpret_cast<XPU_T*>(const_cast<T*>(residual_out.data<T>())); | ||
| } | ||
|
|
||
| XPU_T* add_out_data = const_cast<XPU_T*>(x_data); | ||
| if (bias_data) { | ||
| ret = api::broadcast_add( | ||
| xpu_ctx->x_context(), x_data, bias_data, out_data, {m, n}, {n}); | ||
| PD_CHECK(ret == 0, "broadcast_add"); | ||
| add_out_data = out_data; | ||
| } | ||
|
|
||
| bool use_sdnn = FLAGS_ENABLE_XVLLM_SDNN_INFER; | ||
| if (residual_data) { | ||
| ret = infer_ops::add_rms_layer_norm<XPU_T, XPU_T>(xpu_ctx->x_context(), | ||
| add_out_data, | ||
| residual_data, | ||
| out_data, | ||
| m, | ||
| n, | ||
| epsilon, | ||
| norm_weight_data, | ||
| nullptr, | ||
| nullptr, | ||
| residual_out_data, | ||
| nullptr, | ||
| use_sdnn); | ||
| PD_CHECK(ret == 0, "add_rms_layer_norm"); | ||
| } else { | ||
| ret = api::rms_layer_norm<XPU_T, XPU_T>(xpu_ctx->x_context(), | ||
| add_out_data, | ||
| out_data, | ||
| m, | ||
| n, | ||
| epsilon, | ||
| norm_weight_data, | ||
| nullptr, | ||
| nullptr, | ||
| false); | ||
| PD_CHECK(ret == 0, "rms_layer_norm"); | ||
| } | ||
|
|
||
| return {out, residual_out}; | ||
| } | ||
|
|
||
| std::vector<paddle::Tensor> RmsNorm( | ||
| const paddle::Tensor& x, | ||
| const paddle::optional<paddle::Tensor>& bias, | ||
| const paddle::optional<paddle::Tensor>& residual, | ||
| const paddle::Tensor& norm_weight, | ||
| const paddle::optional<paddle::Tensor>& norm_bias, | ||
| const float epsilon, | ||
| const int begin_norm_axis, | ||
| const float quant_scale, | ||
| const int quant_round_type, | ||
| const float quant_max_bound, | ||
| const float quant_min_bound) { | ||
| const auto x_type = x.dtype(); | ||
|
|
||
| #define APPLY_RMS_NORM_KERNEL(TX) \ | ||
| return RmsNormKernel<TX>(x, \ | ||
| bias, \ | ||
| residual, \ | ||
| norm_weight, \ | ||
| norm_bias, \ | ||
| epsilon, \ | ||
| begin_norm_axis, \ | ||
| quant_scale, \ | ||
| quant_round_type, \ | ||
| quant_max_bound, \ | ||
| quant_min_bound); | ||
|
|
||
| if (x_type == paddle::DataType::BFLOAT16) { | ||
| APPLY_RMS_NORM_KERNEL(paddle::bfloat16); | ||
| } else if (x_type == paddle::DataType::FLOAT16) { | ||
| APPLY_RMS_NORM_KERNEL(paddle::float16); | ||
| } else if (x_type == paddle::DataType::FLOAT32) { | ||
| APPLY_RMS_NORM_KERNEL(float); | ||
| } else { | ||
| PD_THROW("RmsNorm not support x_type=", static_cast<int>(x_type)); | ||
| return {}; | ||
| } | ||
| #undef APPLY_RMS_NORM_KERNEL | ||
| } | ||
|
|
||
| std::vector<std::vector<int64_t>> RmsNormInferShape( | ||
| const std::vector<int64_t>& x_shape, | ||
| const paddle::optional<std::vector<int64_t>>& bias_shape, | ||
| const paddle::optional<std::vector<int64_t>>& residual_shape, | ||
| const std::vector<int64_t>& norm_weight_shape, | ||
| const paddle::optional<std::vector<int64_t>>& norm_bias_shape, | ||
| const float epsilon, | ||
| const int begin_norm_axis, | ||
| const float quant_scale, | ||
| const int quant_round_type, | ||
| const float quant_max_bound, | ||
| const float quant_min_bound) { | ||
| PD_CHECK(begin_norm_axis > 0 && begin_norm_axis <= x_shape.size(), | ||
| "begin_norm_axis check fail"); | ||
| int64_t m = std::accumulate(x_shape.begin(), | ||
| x_shape.begin() + begin_norm_axis, | ||
| static_cast<int64_t>(1), | ||
| std::multiplies<int64_t>()); | ||
| return {x_shape, x_shape, {m}}; | ||
| } | ||
|
|
||
| std::vector<paddle::DataType> RmsNormInferDtype( | ||
| const paddle::DataType& x_dtype, | ||
| const paddle::optional<paddle::DataType>& bias_dtype, | ||
| const paddle::optional<paddle::DataType>& residual_dtype, | ||
| const paddle::DataType& norm_weight_dtype, | ||
| const paddle::optional<paddle::DataType>& norm_bias_dtype, | ||
| const float epsilon, | ||
| const int begin_norm_axis, | ||
| const float quant_scale, | ||
| const int quant_round_type, | ||
| const float quant_max_bound, | ||
| const float quant_min_bound) { | ||
| // out, residual_out | ||
| return {x_dtype, x_dtype}; | ||
| } | ||
|
|
||
| PD_BUILD_STATIC_OP(fused_rms_norm_xpu) | ||
| .Inputs({"x", | ||
| paddle::Optional("bias"), | ||
| paddle::Optional("residual"), | ||
| "norm_weight", | ||
| paddle::Optional("norm_bias")}) | ||
| .Outputs({"out", "residul_out"}) | ||
| .Attrs({"epsilon:float", | ||
| "begin_norm_axis:int", | ||
| "quant_scale:float", | ||
| "quant_round_type:int", | ||
| "quant_max_bound:float", | ||
| "quant_min_bound:float"}) | ||
| .SetKernelFn(PD_KERNEL(RmsNorm)) | ||
| .SetInferShapeFn(PD_INFER_SHAPE(RmsNormInferShape)) | ||
| .SetInferDtypeFn(PD_INFER_DTYPE(RmsNormInferDtype)); | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
为什么需要给xpu单独写一个fused_rms_norm算子呢?和gpu版本的算子有什么区别?
kernel实现可以是硬件相关的,但是算子定义应该是硬件无关的。