Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 10 additions & 10 deletions fastdeploy/rl/dynamic_weight_manager.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,11 +68,11 @@ def update_parameters(self, pid: int = 0) -> None:
paddle.device.cuda.empty_cache()

# step1 : restart paddle process group
if not self.first_load:
paddle.distributed.restart_process_group()
paddle.distributed.restart_process_group(self.parallel_config.tp_group)
if self.parallel_config.enable_expert_parallel:
paddle.distributed.restart_process_group(self.parallel_config.ep_group)
# if not self.first_load:
# paddle.distributed.restart_process_group()
# paddle.distributed.restart_process_group(self.parallel_config.tp_group)
# if self.parallel_config.enable_expert_parallel:
# paddle.distributed.restart_process_group(self.parallel_config.ep_group)

# step2 : recreat deepep buffer when enable expert parallel
if self.parallel_config.enable_expert_parallel and not self.first_load:
Expand Down Expand Up @@ -136,7 +136,7 @@ def clear_parameters(self, pid: int = 0) -> None:
# ep barrier
paddle.distributed.barrier(self.parallel_config.ep_group)
# shutdown ep group
paddle.distributed.shutdown_process_group(self.parallel_config.ep_group)
# paddle.distributed.shutdown_process_group(self.parallel_config.ep_group)

paddle.device.cuda.empty_cache()
# step2: release model weight
Expand All @@ -149,11 +149,11 @@ def clear_parameters(self, pid: int = 0) -> None:
if self.parallel_config.tensor_parallel_size > 1:
# tp barrier
paddle.distributed.barrier(self.parallel_config.tp_group)
paddle.distributed.shutdown_process_group(self.parallel_config.tp_group)
# paddle.distributed.shutdown_process_group(self.parallel_config.tp_group)
if self.parallel_config.enable_expert_parallel:
paddle.distributed.barrier(self.parallel_config.ep_group)
paddle.distributed.shutdown_process_group(self.parallel_config.ep_group)
paddle.distributed.shutdown_process_group()
# paddle.distributed.shutdown_process_group(self.parallel_config.ep_group)
# paddle.distributed.shutdown_process_group()
self._update_shared_status(pid, ModelWeightsStatus.CLEARED)

def _update_model_from_state(self, state_dict: Dict[str, paddle.Tensor], src_type: str):
Expand Down Expand Up @@ -257,7 +257,7 @@ def check_model_weights_status(model_weights_status, model_runner, pid):
"""
check model weights status
"""
logger.info(f"dynamic weight manager is check model weights status! {model_weights_status.value[0]}")
# logger.info(f"dynamic weight manager is check model weights status! {model_weights_status.value[0]}")
while (
model_weights_status.value[0] != ModelWeightsStatus.NORMAL
and model_weights_status.value[0] != ModelWeightsStatus.CLEARED
Expand Down
6 changes: 3 additions & 3 deletions fastdeploy/worker/worker_process.py
Original file line number Diff line number Diff line change
Expand Up @@ -459,7 +459,7 @@ def event_loop_normal(self) -> None:
else:
paddle.distributed.barrier(self.parallel_config.tp_group)
if self.model_weights_signal[0] != ModelWeightsStatus.NORMAL:
logger.info(
logger.debug(
f"Rank: {self.local_rank} to update or clear parameters, signal is {self.model_weights_signal[0]}, [-1:clear, 1:update]"
)
from fastdeploy.rl.dynamic_weight_manager import (
Expand All @@ -473,10 +473,10 @@ def event_loop_normal(self) -> None:
self.worker.model_runner,
self.parallel_config.engine_worker_queue_port,
)
logger.info(f"current task queue data: {self.task_queue.num_tasks()}")
logger.debug(f"current task queue data: {self.task_queue.num_tasks()}")
self.task_queue.clear_data()
self.model_weights_signal[0] = ModelWeightsStatus.NORMAL
logger.info(f"Rank: {self.local_rank} has updated or cleared parameters.")
logger.debug(f"Rank: {self.local_rank} has updated or cleared parameters.")

if self.exist_task_signal.value[0] == ExistTaskStatus.EXIST or self.task_queue.read_finish_flag.get() == 1:
logger.info(f"Rank: {self.local_rank} Detected new requests.")
Expand Down
Loading