Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions docs/api/paddle/nn/Overview_cn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -201,6 +201,7 @@ Transformer 相关

" :ref:`paddle.nn.MultiHeadAttention <cn_api_paddle_nn_MultiHeadAttention>` ", "多头注意力机制"
" :ref:`paddle.nn.functional.scaled_dot_product_attention <cn_api_paddle_nn_functional_scaled_dot_product_attention>` ", "点乘注意力机制,并在此基础上加入了对注意力权重的缩放"
" :ref:`paddle.nn.functional.sparse_attention <cn_api_paddle_nn_functional_sparse_attention>` ", "稀疏版本的 Attention API,对 Transformer 模块中的 Attention 矩阵进行了稀疏化,从而减少内存消耗和计算量"
" :ref:`paddle.nn.Transformer <cn_api_paddle_nn_Transformer>` ", "Transformer 模型"
" :ref:`paddle.nn.TransformerDecoder <cn_api_paddle_nn_TransformerDecoder>` ", "Transformer 解码器"
" :ref:`paddle.nn.TransformerDecoderLayer <cn_api_paddle_nn_TransformerDecoderLayer>` ", "Transformer 解码器层"
Expand Down Expand Up @@ -259,6 +260,7 @@ Loss 层
" :ref:`paddle.nn.CrossEntropyLoss <cn_api_paddle_nn_CrossEntropyLoss>` ", "交叉熵损失层"
" :ref:`paddle.nn.CTCLoss <cn_api_paddle_nn_CTCLoss>` ", "CTCLoss 层"
" :ref:`paddle.nn.HSigmoidLoss <cn_api_paddle_nn_HSigmoidLoss>` ", "层次 sigmoid 损失层"
" :ref:`paddle.nn.HingeEmbeddingLoss <cn_api_paddle_nn_HingeEmbeddingLoss>` ", "HingeEmbeddingLoss 损失层"
" :ref:`paddle.nn.KLDivLoss <cn_api_paddle_nn_KLDivLoss>` ", "Kullback-Leibler 散度损失层"
" :ref:`paddle.nn.L1Loss <cn_api_paddle_nn_L1Loss>` ", "L1 损失层"
" :ref:`paddle.nn.MarginRankingLoss <cn_api_paddle_nn_MarginRankingLoss>` ", "MarginRankingLoss 层"
Expand Down Expand Up @@ -520,6 +522,7 @@ Embedding 相关函数


" :ref:`paddle.nn.functional.affine_grid <cn_api_paddle_nn_functional_affine_grid>` ", "用于生成仿射变换前后的 feature maps 的坐标映射关系"
" :ref:`paddle.nn.functional.channel_shuffle <cn_api_paddle_nn_functional_channel_shuffle>` ", "将一个形为[N, C, H, W]或是[N, H, W, C]的 Tensor 按通道分成 g 组,得到形为[N, g, C/g, H, W]或[N, H, W, g, C/g]的 Tensor,然后转置为[N, C/g, g, H, W]或[N, H, W, C/g, g]的形状,最后重新排列为原来的形状"
" :ref:`paddle.nn.functional.cosine_similarity <cn_api_paddle_nn_functional_cosine_similarity>` ", "用于计算 x1 与 x2 沿 axis 维度的余弦相似度"
" :ref:`paddle.nn.functional.cross_entropy <cn_api_paddle_nn_functional_cross_entropy>` ", "计算输入 input 和标签 label 间的交叉熵"
" :ref:`paddle.nn.functional.grid_sample <cn_api_paddle_nn_functional_grid_sample>` ", "用于调整一个 batch 中图片的大小"
Expand Down