Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions survivalnet/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
from .train import train

# sub-packages with no internal dependencies
from . import sensitivity
from . import analysis

# must be imported before Bayesian_Optimizaiton
#from .CostFunction import cost_func, aggr_st_cost_func, st_cost_func
Expand All @@ -26,5 +26,5 @@
# sub-packages
'model',
'optimization',
'sensitivity',
'analysis',
)
8 changes: 4 additions & 4 deletions survivalnet/analysis/RiskCluster.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import matplotlib as mpl
import matplotlib.pyplot as pylab
import matplotlib.pyplot as plt
import numpy as np
import scipy.cluster.hierarchy as sch
import scipy.spatial.distance as dist
Expand Down Expand Up @@ -85,7 +85,7 @@ def RiskCluster(Gradients, Raw, Symbols, N=30, Tau=0.05):
Normalized = Normalized.transpose()

# generate figure
Figure = pylab.figure(figsize=(WINDOW_WIDTH, WINDOW_HEIGHT))
Figure = plt.figure(figsize=(WINDOW_WIDTH, WINDOW_HEIGHT))

# cluster samples and generate dendrogram
SampleDist = dist.pdist(Normalized.T, 'correlation')
Expand Down Expand Up @@ -137,7 +137,7 @@ def RiskCluster(Gradients, Raw, Symbols, N=30, Tau=0.05):
Heatmap = Figure.add_axes([HEATMAP_X, HEATMAP_Y, HEATMAP_W, HEATMAP_H],
frame_on=False)
Heatmap.matshow(Reordered, aspect='auto', origin='lower',
cmap=pylab.cm.bwr)
cmap=plt.cm.bwr)
Heatmap.set_xticks([])
Heatmap.set_yticks([])

Expand Down Expand Up @@ -175,7 +175,7 @@ def RiskCluster(Gradients, Raw, Symbols, N=30, Tau=0.05):
cnv = Figure.add_axes([TRACK_X, TRACK_Y,
TRACK_W, TRACK_H - len(SigMut)*TRACK],
frame_on=False)
cnv.matshow(CNVs, aspect='auto', origin='lower', cmap=pylab.cm.bwr)
cnv.matshow(CNVs, aspect='auto', origin='lower', cmap=plt.cm.bwr)
for i in range(len(SigCNV)):
cnv.text(-SPACING, i / np.float(len(SigCNV)) +
1/np.float(2*len(SigCNV)),
Expand Down
5 changes: 4 additions & 1 deletion survivalnet/analysis/RiskCohort.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,9 +36,12 @@ def RiskCohort(Model, Features):
# initialize container for risk gradient profiles
Gradients = np.zeros(Features.shape)

# copy input to matrix for Theano
Matrix = np.matrix(Features)

# iterate through samples, calculating risk gradient profile for each
for i in np.arange(Features.shape[0]):
Gradients[i, :] = _RiskBackpropagate(Model, Features[i, :])
Gradients[i, :] = _RiskBackpropagate(Model, Matrix[i, :])

return Gradients

Expand Down
Loading