Skip to content

PrakharJain1509/BIRD-SPECIES

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bird Species Detection

Overview

This project utilizes both audio and image inputs to identify bird species. By leveraging deep learning models, it can classify birds based on their vocalizations (audio) and appearance (image). The system is implemented using Streamlit for an interactive web-based interface.

Features

  • Audio-based Bird Classification: Uses a trained deep learning model to classify birds based on their vocal sounds.
  • Image-based Bird Classification: Identifies bird species from images using a CNN-based classifier.
  • Pre-trained Model Weights: The repository includes pre-trained model weights for both image and audio classification.
  • Streamlit Web Interface: A user-friendly UI to upload images and audio files for classification.

Installation

  1. Clone the repository:
    git clone https://github.com/PrakharJain1509/BIRD-SPECIES.git
    cd BIRD-SPECIES
  2. Create a virtual environment (optional but recommended):
    python -m venv venv
    source venv/bin/activate  # On Windows use `venv\Scripts\activate`
  3. Install dependencies:
    pip install -r requirements.txt
    Alternatively, you can install them manually:
    pip install streamlit numpy joblib librosa torch timm pandas

Running the Application

After installing the dependencies, you can run the application using:

streamlit run stream.py

This will launch the web-based interface in your browser.

Directory Structure

.
├── README.md
├── stream.py                 # Streamlit main script
├── audio                     # Audio processing module
│   ├── audio_main.py
│   ├── new_audio_main.py
│   ├── models_weights        # Audio classification model weights
│   ├── data                  # Contains audio files and metadata
│   │   └── AUDIO_FILES       # Directory for audio files
│   ├── listOfBirdNames.txt
│   ├── commonNames.txt
├── image                     # Image processing module
│   ├── image_main.py
│   ├── new_image_main.py
│   ├── test                  # Sample test images
│   ├── weights               # Image classification model weights
├── Training_Codes            # Training scripts for models
│   ├── classification_data   # Classification datasets
│   │   ├── blasti
│   │   ├── cmnmyn
│   │   └── piedbu
│   ├── dataset               # Processed dataset
│   │   ├── output
│   │   │   ├── test_data
│   │   │   ├── train_data
│   │   ├── test_data
│   │   ├── train_data
│   ├── output
│   │   ├── test_data
│   │   ├── train_data
├── common_names.txt          # Common bird names
└── requirements.txt          # Dependencies file

Models Used

  • Audio Model: audio/models_weights/effnet_seg20_80low.ckpt (EfficientNet-based model for audio classification)
  • Image Model: image/weights/bird-resnet34.pth (ResNet-34 model for image classification)

Input Data

  • Audio Files: Stored in audio/data/AUDIO_FILES/
  • Image Files: Stored in image/test/

Output

After providing an image and audio file, the model will return the predicted bird species name.

Demo

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published