Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
175 changes: 61 additions & 114 deletions generation/maisi/maisi_diff_unet_training_tutorial.ipynb

Large diffs are not rendered by default.

10 changes: 5 additions & 5 deletions generation/maisi/maisi_inference_tutorial.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -364,25 +364,25 @@
"device = torch.device(\"cuda\")\n",
"\n",
"autoencoder = define_instance(args, \"autoencoder_def\").to(device)\n",
"checkpoint_autoencoder = torch.load(args.trained_autoencoder_path)\n",
"checkpoint_autoencoder = torch.load(args.trained_autoencoder_path, weights_only=True)\n",
"autoencoder.load_state_dict(checkpoint_autoencoder)\n",
"\n",
"diffusion_unet = define_instance(args, \"diffusion_unet_def\").to(device)\n",
"checkpoint_diffusion_unet = torch.load(args.trained_diffusion_path)\n",
"checkpoint_diffusion_unet = torch.load(args.trained_diffusion_path, weights_only=False)\n",
"diffusion_unet.load_state_dict(checkpoint_diffusion_unet[\"unet_state_dict\"], strict=True)\n",
"scale_factor = checkpoint_diffusion_unet[\"scale_factor\"].to(device)\n",
"\n",
"controlnet = define_instance(args, \"controlnet_def\").to(device)\n",
"checkpoint_controlnet = torch.load(args.trained_controlnet_path)\n",
"checkpoint_controlnet = torch.load(args.trained_controlnet_path, weights_only=False)\n",
"monai.networks.utils.copy_model_state(controlnet, diffusion_unet.state_dict())\n",
"controlnet.load_state_dict(checkpoint_controlnet[\"controlnet_state_dict\"], strict=True)\n",
"\n",
"mask_generation_autoencoder = define_instance(args, \"mask_generation_autoencoder_def\").to(device)\n",
"checkpoint_mask_generation_autoencoder = torch.load(args.trained_mask_generation_autoencoder_path)\n",
"checkpoint_mask_generation_autoencoder = torch.load(args.trained_mask_generation_autoencoder_path, weights_only=True)\n",
"mask_generation_autoencoder.load_state_dict(checkpoint_mask_generation_autoencoder)\n",
"\n",
"mask_generation_diffusion_unet = define_instance(args, \"mask_generation_diffusion_def\").to(device)\n",
"checkpoint_mask_generation_diffusion_unet = torch.load(args.trained_mask_generation_diffusion_path)\n",
"checkpoint_mask_generation_diffusion_unet = torch.load(args.trained_mask_generation_diffusion_path, weights_only=True)\n",
"mask_generation_diffusion_unet.load_state_dict(checkpoint_mask_generation_diffusion_unet[\"unet_state_dict\"])\n",
"mask_generation_scale_factor = checkpoint_mask_generation_diffusion_unet[\"scale_factor\"]\n",
"\n",
Expand Down
162 changes: 110 additions & 52 deletions generation/maisi/maisi_train_controlnet_tutorial.ipynb

Large diffs are not rendered by default.

58 changes: 33 additions & 25 deletions generation/maisi/maisi_train_vae_tutorial.ipynb

Large diffs are not rendered by default.

8 changes: 6 additions & 2 deletions generation/maisi/scripts/diff_model_create_training_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
import nibabel as nib
import numpy as np
import torch
import torch.distributed as dist

import monai
from monai.transforms import Compose
Expand Down Expand Up @@ -146,7 +147,7 @@ def process_file(
out_path.parent.mkdir(parents=True, exist_ok=True)
logger.info(f"out_filename: {out_filename}")

with torch.cuda.amp.autocast():
with torch.amp.autocast("cuda"):
pt_nda = torch.from_numpy(nda_image).float().to(device).unsqueeze(0).unsqueeze(0)
z = autoencoder.encode_stage_2_inputs(pt_nda)
logger.info(f"z: {z.size()}, {z.dtype}")
Expand Down Expand Up @@ -175,7 +176,7 @@ def diff_model_create_training_data(env_config_path: str, model_config_path: str

autoencoder = define_instance(args, "autoencoder_def").to(device)
try:
checkpoint_autoencoder = torch.load(args.trained_autoencoder_path)
checkpoint_autoencoder = torch.load(args.trained_autoencoder_path, weights_only=True)
autoencoder.load_state_dict(checkpoint_autoencoder)
except Exception:
logger.error("The trained_autoencoder_path does not exist!")
Expand All @@ -202,6 +203,9 @@ def diff_model_create_training_data(env_config_path: str, model_config_path: str

process_file(filepath, args, autoencoder, device, plain_transforms, new_transforms, logger)

if dist.is_initialized():
dist.destroy_process_group()


if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Diffusion Model Training Data Creation")
Expand Down
13 changes: 9 additions & 4 deletions generation/maisi/scripts/diff_model_infer.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
import nibabel as nib
import numpy as np
import torch
import torch.distributed as dist
from tqdm import tqdm

from monai.inferers import sliding_window_inference
Expand Down Expand Up @@ -59,13 +60,13 @@ def load_models(args: argparse.Namespace, device: torch.device, logger: logging.
"""
autoencoder = define_instance(args, "autoencoder_def").to(device)
try:
checkpoint_autoencoder = torch.load(args.trained_autoencoder_path)
checkpoint_autoencoder = torch.load(args.trained_autoencoder_path, weights_only=True)
autoencoder.load_state_dict(checkpoint_autoencoder)
except Exception:
logger.error("The trained_autoencoder_path does not exist!")

unet = define_instance(args, "diffusion_unet_def").to(device)
checkpoint = torch.load(f"{args.model_dir}/{args.model_filename}", map_location=device)
checkpoint = torch.load(f"{args.model_dir}/{args.model_filename}", map_location=device, weights_only=False)
unet.load_state_dict(checkpoint["unet_state_dict"], strict=True)
logger.info(f"checkpoints {args.model_dir}/{args.model_filename} loaded.")

Expand Down Expand Up @@ -149,7 +150,7 @@ def run_inference(
autoencoder.eval()
unet.eval()

with torch.cuda.amp.autocast(enabled=True):
with torch.amp.autocast("cuda", enabled=True):
for t in tqdm(noise_scheduler.timesteps, ncols=110):
model_output = unet(
x=image,
Expand Down Expand Up @@ -271,7 +272,7 @@ def diff_model_infer(env_config_path: str, model_config_path: str, model_def_pat
)

timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
output_path = "{0}/{1}_seed{2}_size{3:d}x{4:d}x{5:d}_spacing{6:.2f}x{7:.2f}x{8:.2f}_{9}.nii.gz".format(
output_path = "{0}/{1}_seed{2}_size{3:d}x{4:d}x{5:d}_spacing{6:.2f}x{7:.2f}x{8:.2f}_{9}_rank{10}.nii.gz".format(
args.output_dir,
output_prefix,
random_seed,
Expand All @@ -282,9 +283,13 @@ def diff_model_infer(env_config_path: str, model_config_path: str, model_def_pat
out_spacing[1],
out_spacing[2],
timestamp,
local_rank,
)
save_image(data, output_size, out_spacing, output_path, logger)

if dist.is_initialized():
dist.destroy_process_group()


if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Diffusion Model Inference")
Expand Down
13 changes: 9 additions & 4 deletions generation/maisi/scripts/diff_model_setting.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,8 @@ def setup_logging(logger_name: str = "") -> logging.Logger:
logging.Logger: Configured logger.
"""
logger = logging.getLogger(logger_name)
logger.addFilter(RankFilter())
if dist.is_initialized():
logger.addFilter(RankFilter())
logging.basicConfig(
level=logging.INFO,
format="[%(asctime)s.%(msecs)03d][%(levelname)5s](%(name)s) - %(message)s",
Expand Down Expand Up @@ -80,9 +81,13 @@ def initialize_distributed() -> tuple:
Returns:
tuple: local_rank, world_size, and device.
"""
dist.init_process_group(backend="nccl", init_method="env://")
local_rank = dist.get_rank()
world_size = dist.get_world_size()
if torch.cuda.is_available() and torch.cuda.device_count() > 1:
dist.init_process_group(backend="nccl", init_method="env://")
local_rank = dist.get_rank()
world_size = dist.get_world_size()
else:
local_rank = 0
world_size = 1
device = torch.device("cuda", local_rank)
torch.cuda.set_device(device)
return local_rank, world_size, device
20 changes: 14 additions & 6 deletions generation/maisi/scripts/diff_model_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@

import torch
import torch.distributed as dist
from torch.cuda.amp import GradScaler, autocast
from torch.amp import GradScaler, autocast
from torch.nn.parallel import DistributedDataParallel

import monai
Expand Down Expand Up @@ -64,17 +64,22 @@ def prepare_data(
Returns:
ThreadDataLoader: Data loader for training.
"""

def _load_data_from_file(file_path, key):
with open(file_path) as f:
return torch.FloatTensor(json.load(f)[key])

train_transforms = Compose(
[
monai.transforms.LoadImaged(keys=["image"]),
monai.transforms.EnsureChannelFirstd(keys=["image"]),
monai.transforms.Lambdad(
keys="top_region_index", func=lambda x: torch.FloatTensor(json.load(open(x))["top_region_index"])
keys="top_region_index", func=lambda x: _load_data_from_file(x, "top_region_index")
),
monai.transforms.Lambdad(
keys="bottom_region_index", func=lambda x: torch.FloatTensor(json.load(open(x))["bottom_region_index"])
keys="bottom_region_index", func=lambda x: _load_data_from_file(x, "bottom_region_index")
),
monai.transforms.Lambdad(keys="spacing", func=lambda x: torch.FloatTensor(json.load(open(x))["spacing"])),
monai.transforms.Lambdad(keys="spacing", func=lambda x: _load_data_from_file(x, "spacing")),
monai.transforms.Lambdad(keys="top_region_index", func=lambda x: x * 1e2),
monai.transforms.Lambdad(keys="bottom_region_index", func=lambda x: x * 1e2),
monai.transforms.Lambdad(keys="spacing", func=lambda x: x * 1e2),
Expand Down Expand Up @@ -231,7 +236,7 @@ def train_one_epoch(

optimizer.zero_grad(set_to_none=True)

with autocast(enabled=True):
with autocast("cuda", enabled=True):
noise = torch.randn(
(num_images_per_batch, 4, images.size(-3), images.size(-2), images.size(-1)), device=device
)
Expand Down Expand Up @@ -365,7 +370,7 @@ def diff_model_train(env_config_path: str, model_config_path: str, model_def_pat
]
lr_scheduler = create_lr_scheduler(optimizer, total_steps)
loss_pt = torch.nn.L1Loss()
scaler = GradScaler()
scaler = GradScaler("cuda")

torch.set_float32_matmul_precision("highest")
logger.info("torch.set_float32_matmul_precision -> highest.")
Expand Down Expand Up @@ -403,6 +408,9 @@ def diff_model_train(env_config_path: str, model_config_path: str, model_def_pat
args,
)

if dist.is_initialized():
dist.destroy_process_group()


if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Diffusion Model Training")
Expand Down
9 changes: 6 additions & 3 deletions generation/maisi/scripts/infer_controlnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,9 +69,12 @@ def main():
logger.info(f"Number of GPUs: {torch.cuda.device_count()}")
logger.info(f"World_size: {world_size}")

env_dict = json.load(open(args.environment_file, "r"))
config_dict = json.load(open(args.config_file, "r"))
training_config_dict = json.load(open(args.training_config, "r"))
with open(args.environment_file, "r") as env_file:
env_dict = json.load(env_file)
with open(args.config_file, "r") as config_file:
config_dict = json.load(config_file)
with open(args.training_config, "r") as training_config_file:
training_config_dict = json.load(training_config_file)

for k, v in env_dict.items():
setattr(args, k, v)
Expand Down
4 changes: 2 additions & 2 deletions generation/maisi/scripts/sample.py
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,7 @@ def ldm_conditional_sample_one_mask(
"""
recon_model = ReconModel(autoencoder=autoencoder, scale_factor=scale_factor).to(device)

with torch.no_grad(), torch.cuda.amp.autocast():
with torch.no_grad(), torch.amp.autocast("cuda"):
# Generate random noise
latents = initialize_noise_latents(latent_shape, device)
anatomy_size = torch.FloatTensor(anatomy_size).unsqueeze(0).unsqueeze(0).half().to(device)
Expand Down Expand Up @@ -226,7 +226,7 @@ def ldm_conditional_sample_one_image(

recon_model = ReconModel(autoencoder=autoencoder, scale_factor=scale_factor).to(device)

with torch.no_grad(), torch.cuda.amp.autocast():
with torch.no_grad(), torch.amp.autocast("cuda"):
logging.info("---- Start generating latent features... ----")
start_time = time.time()
# generate segmentation mask
Expand Down
15 changes: 9 additions & 6 deletions generation/maisi/scripts/train_controlnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
import torch.nn.functional as F
from monai.networks.utils import copy_model_state
from monai.utils import RankFilter
from torch.cuda.amp import GradScaler, autocast
from torch.amp import GradScaler, autocast
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter

Expand Down Expand Up @@ -71,9 +71,12 @@ def main():
logger.info(f"Number of GPUs: {torch.cuda.device_count()}")
logger.info(f"World_size: {world_size}")

env_dict = json.load(open(args.environment_file, "r"))
config_dict = json.load(open(args.config_file, "r"))
training_config_dict = json.load(open(args.training_config, "r"))
with open(args.environment_file, "r") as env_file:
env_dict = json.load(env_file)
with open(args.config_file, "r") as config_file:
config_dict = json.load(config_file)
with open(args.training_config, "r") as training_config_file:
training_config_dict = json.load(training_config_file)

for k, v in env_dict.items():
setattr(args, k, v)
Expand Down Expand Up @@ -151,7 +154,7 @@ def main():

# Step 4: training
n_epochs = args.controlnet_train["n_epochs"]
scaler = GradScaler()
scaler = GradScaler("cuda")
total_step = 0
best_loss = 1e4

Expand All @@ -174,7 +177,7 @@ def main():

optimizer.zero_grad(set_to_none=True)

with autocast(enabled=True):
with autocast("cuda", enabled=True):
# generate random noise
noise_shape = list(inputs.shape)
noise = torch.randn(noise_shape, dtype=inputs.dtype).to(device)
Expand Down