Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -38,13 +38,14 @@ def calculate(self, results: list[ExperimentDescription]) -> tuple:

errors.append(error)

mean = np.sum(errors) / len(errors)
standart_deviation = np.sqrt(np.sum([(x - mean) ** 2 for x in errors]) / len(errors))
if not errors:
return 0, 0, 0

errors.sort()
median = errors[len(errors) // 2]
mean = np.mean(errors)
std = np.std(errors)
median = np.median(errors)

return float(mean), float(standart_deviation), float(median)
return float(mean), float(std), float(median)

def analyze_method(self, results: list[ExperimentDescription], method: str):
mean, deviation, median = self.calculate(results)
Expand Down
2 changes: 1 addition & 1 deletion experimental_env/experiment/estimators.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,7 +90,7 @@ def __init__(self, brkpointer, dst_checker):

@property
def name(self):
return "LM-EM"
return "ELM"

def _helper(self, problem: OrderedProblem):
"""
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
"""A module that provides an abstract class for performing the 2nd stage of the experiment"""

import random
import warnings
from abc import ABC, abstractmethod
from pathlib import Path
Expand All @@ -20,7 +21,7 @@ class AExecutor(ABC):
as well as the implementation of the execute method, to implement the 2nd stage of the experiment.
"""

def __init__(self, path: Path, cpu_count: int, seed):
def __init__(self, path: Path, cpu_count: int, seed: int):
"""
Class constructor

Expand All @@ -31,6 +32,8 @@ def __init__(self, path: Path, cpu_count: int, seed):
self._out_dir = path
self._cpu_count = cpu_count
self._seed = seed

random.seed(self._seed)
np.random.seed(self._seed)

@abstractmethod
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ def init_problems(self, ds_descriptions, models):
return [
Problem(
descr.samples,
RandomMixtureGenerator(self._seed).create_mixture(models),
RandomMixtureGenerator().create_mixture(models),
)
for i, descr in enumerate(ds_descriptions)
]
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ def init_problems(self, ds_descriptions, models):
return [
Problem(
descr.samples,
StandartMixtureGenerator(self._seed).create_mixture(models),
StandartMixtureGenerator().create_mixture(models),
)
for i, descr in enumerate(ds_descriptions)
]
4 changes: 0 additions & 4 deletions experimental_env/mixture_generators/abstract_generator.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
"""A module that provides an abstract class for generating a mixture."""

import random
from abc import ABC, abstractmethod

from mpest import Distribution, MixtureDistribution
Expand All @@ -12,9 +11,6 @@ class AMixtureGenerator(ABC):
An abstract class for generating mixtures.
"""

def __init__(self, seed: int = 42):
random.seed(seed)

@abstractmethod
def generate_priors(self, models: list[type[AModel]]) -> list[float | None]:
"""
Expand Down
6 changes: 3 additions & 3 deletions experimental_env/mixture_generators/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,8 +16,8 @@ def generate_standart_params(models: list[type[AModel]]) -> list[Distribution]:
params = [1.0]
elif m == GaussianModel:
params = [0.0, 1.0]
else:
params = [1.0, 1.5]
else: # Weibull
params = [1.0, 1.0]

dists.append(Distribution.from_params(m, params))

Expand All @@ -34,7 +34,7 @@ def generate_uniform_params(models: list[type[AModel]]) -> list[Distribution]:
params = [uniform(0.1, 5.0)]
elif m == GaussianModel:
params = [uniform(-5.0, 5.0), uniform(0.1, 5.0)]
else:
else: # Weibull
params = [uniform(0.1, 5.0), uniform(0.1, 5.0)]

dists.append(Distribution.from_params(m, params))
Expand Down
5 changes: 3 additions & 2 deletions experimental_env/preparation/dataset_generator.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,9 +26,11 @@ def __init__(self, seed: int = 42):
"""
Setting seed for determined result.
"""
random.seed(seed)
self._seed = seed

random.seed(self._seed)
np.random.seed(self._seed)

def generate(
self,
samples_size: int,
Expand Down Expand Up @@ -59,7 +61,6 @@ class ConcreteDatasetGenerator:
"""

def __init__(self, seed: int = 42):
np.random.seed(seed)
self._dists: list[Distribution] = []
self._priors: list[float | None] = []

Expand Down
Empty file added tests/core/__init__.py
Empty file.
210 changes: 210 additions & 0 deletions tests/core/test_distribution.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,210 @@
from unittest.mock import MagicMock, Mock

import numpy as np
import pytest
from hypothesis import given
from hypothesis import strategies as st

from mpest.core.distribution import Distribution
from mpest.models import AModel, AModelWithGenerator


@st.composite
def valid_params(draw, min_size=1, max_size=5):
size = draw(st.integers(min_value=min_size, max_value=max_size))
params_list = draw(
st.lists(
st.floats(min_value=-100, max_value=100, allow_nan=False, allow_infinity=False),
min_size=size,
max_size=size,
)
)
return np.array(params_list)


@st.composite
def valid_x(draw):
return draw(st.floats(min_value=-100, max_value=100, allow_nan=False, allow_infinity=False))


@st.composite
def valid_size(draw):
return draw(st.integers(min_value=1, max_value=100))


class MockModel(AModel):
@property
def name(self):
return "MockModel"

def pdf(self, x, params):
return 0.1 * x * sum(params)

def lpdf(self, x, params):
return np.log(self.pdf(x, params))

def params_convert_to_model(self, params):
return params

def params_convert_from_model(self, params):
return params


class MockModelWithGenerator(AModelWithGenerator):
@property
def name(self):
return "MockModelWithGenerator"

def pdf(self, x, params):
return 0.1 * x * sum(params)

def lpdf(self, x, params):
return np.log(self.pdf(x, params))

def params_convert_to_model(self, params):
return params

def params_convert_from_model(self, params):
return params

def generate(self, params, size=1, **kwargs):
return np.random.uniform(0, 1, size=size)


class TestModuleDistribution:
def test_init(self):
model = Mock()
params = np.array([1.0, 2.0])

dist = Distribution(model=model, params=params)

assert dist._model is model
assert np.array_equal(dist._params, params)

def test_from_params(self):
MockModelClass = Mock()
mock_instance = Mock()
MockModelClass.return_value = mock_instance
params = [1.0, 2.0]

dist = Distribution.from_params(MockModelClass, params)

MockModelClass.assert_called_once()
assert dist._model is mock_instance
assert np.array_equal(dist._params, np.array(params))

def test_model_property(self):
model = Mock()
params = np.array([1.0, 2.0])

dist = Distribution(model=model, params=params)

assert dist.model is model

def test_params_property(self):
model = Mock()
params = np.array([1.0, 2.0])

dist = Distribution(model=model, params=params)

assert dist.params is params
assert np.array_equal(dist.params, params)

def test_has_generator_property_true(self):
model = MagicMock(spec=AModelWithGenerator)
params = np.array([1.0, 2.0])

dist = Distribution(model=model, params=params)

assert dist.has_generator is True

def test_has_generator_property_false(self):
model = MagicMock(spec=AModel)
params = np.array([1.0, 2.0])

dist = Distribution(model=model, params=params)

assert dist.has_generator is False

@given(valid_x(), valid_params())
def test_pdf_calls_model_pdf_correctly(self, x, params):
model = Mock()
return_value = 0.1
converted_params = np.array([3.0, 4.0])
model.params_convert_to_model.return_value = converted_params
model.pdf.return_value = return_value

dist = Distribution(model=model, params=params)
result = dist.pdf(x)

model.params_convert_to_model.assert_called_once_with(params)
model.pdf.assert_called_once_with(x, converted_params)
assert result == return_value

@given(valid_size(), valid_params())
def test_generate_with_generator_model(self, size, params):
model = MagicMock(spec=AModelWithGenerator)
converted_params = np.array([3.0, 4.0])
model.params_convert_to_model.return_value = converted_params
generated_samples = np.random.uniform(0, 1, size=size)
model.generate.return_value = generated_samples

dist = Distribution(model=model, params=params)
result = dist.generate(size=size)

model.params_convert_to_model.assert_called_once_with(params)
model.generate.assert_called_once_with(converted_params, size=size)
assert np.array_equal(result, generated_samples)

def test_generate_without_generator_raises_typeerror(self):
model = MagicMock(spec=AModel)
params = np.array([1.0, 2.0])

dist = Distribution(model=model, params=params)

with pytest.raises(TypeError):
dist.generate(size=3)


class TestIntegrationDistribution:
@given(valid_x(), valid_params())
def test_pdf_integration(self, x, params):
model = MockModel()
dist = Distribution(model=model, params=params)

converted_params = model.params_convert_to_model(params)
expected = model.pdf(x, converted_params)
actual = dist.pdf(x)

assert actual == pytest.approx(expected)

@given(valid_size(), valid_params())
def test_generate_integration(self, size, params):
model = MockModelWithGenerator()

dist = Distribution(model=model, params=params)
result = dist.generate(size=size)

assert result.shape == (size,)
assert result.dtype == np.float64
assert np.all(result >= 0)
assert np.all(result < 1)

def test_generate_without_generator_raises_typeerror_integration(self):
model = MockModel()
params = np.array([1.0, 2.0])

dist = Distribution(model=model, params=params)

with pytest.raises(TypeError):
dist.generate(size=3)

@given(valid_x(), valid_params())
def test_pdf_consistent_results(self, x, params):
model = MockModel()
dist = Distribution(model=model, params=params)

result1 = dist.pdf(x)
result2 = dist.pdf(x)

assert result1 == pytest.approx(result2)
Loading