Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion .idea/Filteristic.iml

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,4 +51,4 @@ Featured task: different filter names must appear to the user

<h2 style= "color:#23968b">Domain Modeling</h2>

[white board](https://miro.com/app/board/o9J_lgjUC2c=/)
[white board ](https://miro.com/app/board/o9J_lgjUC2c=/)
Binary file added assest/10-2-moustache-free-png-image.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added assest/flower-crown-png-42606.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added assest/mustach.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added assest/sunglasses2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified filters/__pycache__/filter1.cpython-39.pyc
Binary file not shown.
Binary file added filters/__pycache__/glasses_black.cpython-39.pyc
Binary file not shown.
Binary file added filters/__pycache__/gost.cpython-39.pyc
Binary file not shown.
Binary file not shown.
Binary file not shown.
52 changes: 52 additions & 0 deletions filters/face_filter_crown.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
# import cv2
# import numpy as np
# import dlib
# from math import hypot
# filter_image = cv2.imread("../assest/flower-crown-png-42606.png")
#
# # Loading Face detector
# detector = dlib.get_frontal_face_detector()
# predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
#
# cap = cv2.VideoCapture(0)
#
# while True :
# _, frame = cap.read()
# gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# faces = detector(frame)
# for face in faces :
# landmarks = predictor(gray_frame, face)
# top_glasses = (landmarks.part(24).x , landmarks.part(24).y)
# left_glasses = (landmarks.part(0).x , landmarks.part(0).y)
# right_glasses = (landmarks.part(16).x , landmarks.part(16).y)
# center_glasses = (landmarks.part(27).x , landmarks.part(27).y)
#
# glasses_width = int (hypot(left_glasses[0] -right_glasses[0],
# left_glasses[1] - right_glasses[1]))
#
# glasses_height = int(glasses_width * 0.6)
#
# # positios
# upper_left = (int(center_glasses[0] - glasses_width/2 ),
# int(center_glasses[1] - glasses_height/2))
# lower_right = (int(center_glasses[0] + glasses_width / 2),
# int(center_glasses[1] + glasses_height / 2))
#
# # Adding the glasses in the correct position
# glasses = cv2.resize(filter_image,(glasses_width , glasses_height))
# gray_glasses = cv2.cvtColor(glasses, cv2.COLOR_BGR2GRAY)
#
#
# _, glasses_mask = cv2.threshold(gray_glasses,120, 225, cv2.THRESH_BINARY_INV)
# glasses_area = frame[upper_left[1] : upper_left[1]+glasses_height , upper_left[0]:upper_left[0]+glasses_width]
# glasses_ares_no_glasses = cv2.bitwise_and(glasses_area , glasses_area,mask= glasses_mask)
# final_glasses = cv2.add(glasses_ares_no_glasses, glasses)
# frame[upper_left[1]: upper_left[1] + glasses_height, upper_left[0]:upper_left[0] + glasses_width] = final_glasses
#
# cv2.imshow("Frame",frame)
#
#
#
# key = cv2.waitKey(1)
# if key ==27 :
# break
62 changes: 62 additions & 0 deletions filters/glasses_black.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
import cv2
import numpy as np
import dlib
from math import hypot
filter_image = cv2.imread("assest/sunglasses2.png")

# Loading Face detector
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("assest\shape_predictor_68_face_landmarks.dat")

def filteringmouse(cap,rows, cols):
filter1 = np.zeros((rows, cols), np.uint8)
_, frame = cap.read()
filter1.fill(0)
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = detector(frame)

# if faces:
try:
filter(frame,gray_frame,faces,filter_image,27,27,1,0.35)
# filter(frame, gray_frame, faces, filter_image3,27,27,1.5,2,25)
except:
_, frame_f = cap.read()
cv2.imshow("Frame", frame_f)
# else:
# _, frame_f = cap.read()
# cv2.imshow("Frame", frame_f)
def filter(frame,gray_frame,faces,filter_image1,X,Y,width,height,above=0,left=0):
for face in faces:
landmarks = predictor(gray_frame, face)

# filter coordinates
# top_filter = (landmarks.part(27).x+10, landmarks.part(24).y+10)
center_filter = (landmarks.part(X).x-left, landmarks.part(Y).y-above)
left_filter = (landmarks.part(0).x, landmarks.part(0).y)
right_filter = (landmarks.part(16).x, landmarks.part(16).y)

filter_width = int(hypot(left_filter[0] - right_filter[0],
left_filter[1] - right_filter[1]) * width)
filter_height = int(filter_width * height)

# New filter position
top_left = (int(center_filter[0] - filter_width / 2),
int(center_filter[1] - filter_height /2 ))
bottom_right = (int(center_filter[0] + filter_width / 2),
int(center_filter[1] + filter_height / 2))

# Adding the new filter
# coloring
filtery = cv2.resize(filter_image1, (filter_width, filter_height))
filtery_gray = cv2.cvtColor(filtery, cv2.COLOR_BGR2GRAY)
_, filter1 = cv2.threshold(filtery_gray, 125, 225, cv2.THRESH_BINARY)

filter_area = frame[top_left[1]: top_left[1] + filter_height,
top_left[0]: top_left[0] + filter_width]
filter_area_no_filter = cv2.bitwise_and(filter_area, filter_area, mask=filter1)
# final_filter = cv2.add(filter_area_no_filter, filtery)

frame[top_left[1]: top_left[1] + filter_height,
top_left[0]: top_left[0] + filter_width,:] = filter_area_no_filter

cv2.imshow("Frame", frame)
30 changes: 30 additions & 0 deletions filters/gost.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
import cv2
import numpy as np
import dlib
from math import hypot
filter_image = cv2.imread("assest/10-2-moustache-free-png-image.png")

# Loading Face detector
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("assest\shape_predictor_68_face_landmarks.dat")

def filteringmouse(cap,rows, cols):
filter1 = np.zeros((rows, cols), np.uint8)
_, frame = cap.read()
filter1.fill(0)
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = detector(frame)

# if faces:
try:
filter(frame)
# filter(frame, gray_frame, faces, filter_image3,27,27,1.5,2,25)
except:
_, frame_f = cap.read()
cv2.imshow("Frame", frame_f)
# else:
# _, frame_f = cap.read()
# cv2.imshow("Frame", frame_f)
def filter(frame):
invert = cv2.bitwise_not(frame)
cv2.imshow("Frame", invert)
62 changes: 62 additions & 0 deletions filters/head_crown.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
import cv2
import numpy as np
import dlib
from math import hypot
filter_image = cv2.imread("assest/flower-crown-png-42606.png")

# Loading Face detector
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("assest\shape_predictor_68_face_landmarks.dat")

def filteringmouse(cap,rows, cols):
filter1 = np.zeros((rows, cols), np.uint8)
_, frame = cap.read()
filter1.fill(0)
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = detector(frame)

# if faces:
try:
filter(frame,gray_frame,faces,filter_image,27,27,1.2,0.6,20)
# filter(frame, gray_frame, faces, filter_image3,27,27,1.5,2,25)
except:
_, frame_f = cap.read()
cv2.imshow("Frame", frame_f)
# else:
# _, frame_f = cap.read()
# cv2.imshow("Frame", frame_f)
def filter(frame,gray_frame,faces,filter_image1,X,Y,width,height,above=0,left=0):
for face in faces:
landmarks = predictor(gray_frame, face)

# filter coordinates
# top_filter = (landmarks.part(27).x+10, landmarks.part(24).y+10)
center_filter = (landmarks.part(X).x-left, landmarks.part(Y).y-above)
left_filter = (landmarks.part(4).x, landmarks.part(4).y)
right_filter = (landmarks.part(14).x, landmarks.part(14).y)

filter_width = int(hypot(left_filter[0] - right_filter[0],
left_filter[1] - right_filter[1]) * width)
filter_height = int(filter_width * height)

# New filter position
top_left = (int(center_filter[0] - filter_width / 2),
int(center_filter[1] - filter_height ))
bottom_right = (int(center_filter[0] + filter_width / 2),
int(center_filter[1] + filter_height / 2))

# Adding the new filter
# coloring
filtery = cv2.resize(filter_image1, (filter_width, filter_height))
filtery_gray = cv2.cvtColor(filtery, cv2.COLOR_BGR2GRAY)
_, filter1 = cv2.threshold(filtery_gray, 25, 255, cv2.THRESH_BINARY_INV)

filter_area = frame[top_left[1]: top_left[1] + filter_height,
top_left[0]: top_left[0] + filter_width]
filter_area_no_filter = cv2.bitwise_and(filter_area, filter_area, mask=filter1)
final_filter = cv2.add(filter_area_no_filter, filtery)

frame[top_left[1]: top_left[1] + filter_height,
top_left[0]: top_left[0] + filter_width,:] = final_filter

cv2.imshow("Frame", frame)
62 changes: 62 additions & 0 deletions filters/mustache_filter.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
import cv2
import numpy as np
import dlib
from math import hypot
filter_image = cv2.imread("assest/mustach.png")

# Loading Face detector
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("assest\shape_predictor_68_face_landmarks.dat")

def filteringmouse(cap,rows, cols):
filter1 = np.zeros((rows, cols), np.uint8)
_, frame = cap.read()
filter1.fill(0)
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = detector(frame)

# if faces:
try:
filter(frame,gray_frame,faces,filter_image,57,57,1,1)
# filter(frame, gray_frame, faces, filter_image3,27,27,1.5,2,25)
except:
_, frame_f = cap.read()
cv2.imshow("Frame", frame_f)
# else:
# _, frame_f = cap.read()
# cv2.imshow("Frame", frame_f)
def filter(frame,gray_frame,faces,filter_image1,X,Y,width,height,above=0,left=0):
for face in faces:
landmarks = predictor(gray_frame, face)

# filter coordinates
# top_filter = (landmarks.part(27).x+10, landmarks.part(24).y+10)
center_filter = (landmarks.part(X).x-left, landmarks.part(Y).y-above)
left_filter = (landmarks.part(4).x, landmarks.part(4).y)
right_filter = (landmarks.part(12).x, landmarks.part(12).y)

filter_width = int(hypot(left_filter[0] - right_filter[0],
left_filter[1] - right_filter[1]) * width)
filter_height = int(filter_width * height)

# New filter position
top_left = (int(center_filter[0] - filter_width / 2),
int(center_filter[1] - filter_height /2 ))
bottom_right = (int(center_filter[0] + filter_width / 2),
int(center_filter[1] + filter_height / 2))

# Adding the new filter
# coloring
filtery = cv2.resize(filter_image1, (filter_width, filter_height))
filtery_gray = cv2.cvtColor(filtery, cv2.COLOR_BGR2GRAY)
_, filter1 = cv2.threshold(filtery_gray, 125, 225, cv2.THRESH_BINARY)

filter_area = frame[top_left[1]: top_left[1] + filter_height,
top_left[0]: top_left[0] + filter_width]
filter_area_no_filter = cv2.bitwise_and(filter_area, filter_area, mask=filter1)
# final_filter = cv2.add(filter_area_no_filter, filtery)

frame[top_left[1]: top_left[1] + filter_height,
top_left[0]: top_left[0] + filter_width,:] = filter_area_no_filter

cv2.imshow("Frame", frame)
62 changes: 62 additions & 0 deletions filters/mustache_filter_2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
import cv2
import numpy as np
import dlib
from math import hypot
filter_image = cv2.imread("assest/10-2-moustache-free-png-image.png")

# Loading Face detector
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("assest\shape_predictor_68_face_landmarks.dat")

def filteringmouse(cap,rows, cols):
filter1 = np.zeros((rows, cols), np.uint8)
_, frame = cap.read()
filter1.fill(0)
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = detector(frame)

# if faces:
try:
filter(frame,gray_frame,faces,filter_image,51,51,1,0.5,1,-3)
# filter(frame, gray_frame, faces, filter_image3,27,27,1.5,2,25)
except:
_, frame_f = cap.read()
cv2.imshow("Frame", frame_f)
# else:
# _, frame_f = cap.read()
# cv2.imshow("Frame", frame_f)
def filter(frame,gray_frame,faces,filter_image1,X,Y,width,height,above=0,left=0):
for face in faces:
landmarks = predictor(gray_frame, face)

# filter coordinates
# top_filter = (landmarks.part(27).x+10, landmarks.part(24).y+10)
center_filter = (landmarks.part(X).x-left, landmarks.part(Y).y-above)
left_filter = (landmarks.part(4).x, landmarks.part(4).y)
right_filter = (landmarks.part(12).x, landmarks.part(12).y)

filter_width = int(hypot(left_filter[0] - right_filter[0],
left_filter[1] - right_filter[1]) * width)
filter_height = int(filter_width * height)

# New filter position
top_left = (int(center_filter[0] - filter_width / 2),
int(center_filter[1] - filter_height /2 ))
bottom_right = (int(center_filter[0] + filter_width / 2),
int(center_filter[1] + filter_height / 2))

# Adding the new filter
# coloring
filtery = cv2.resize(filter_image1, (filter_width, filter_height))
filtery_gray = cv2.cvtColor(filtery, cv2.COLOR_BGR2GRAY)
_, filter1 = cv2.threshold(filtery_gray, 25, 225, cv2.THRESH_BINARY_INV)

filter_area = frame[top_left[1]: top_left[1] + filter_height,
top_left[0]: top_left[0] + filter_width]
filter_area_no_filter = cv2.bitwise_and(filter_area, filter_area, mask=filter1)
final_filter = cv2.add(filter_area_no_filter, filtery)

frame[top_left[1]: top_left[1] + filter_height,
top_left[0]: top_left[0] + filter_width,:] = final_filter

cv2.imshow("Frame", frame)
Binary file added filters/shape_predictor_68_face_landmarks.dat
Binary file not shown.
Binary file added sunglasses.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.