Skip to content

Qredence/skill-fleet

Repository files navigation

Skill Fleet

A modular AI capability platform that creates, manages, and deploys agent skills as reusable, standards-compliant components.

Skill Fleet transforms how AI agents learn by organizing capabilities in a hierarchical taxonomy. Instead of bloated monolithic prompts, skills are modular, versioned, and discoverableβ€”loaded on-demand when agents need them.

Perfect for: AI teams building agent systems, platform engineers managing capability libraries, and organizations standardizing AI knowledge management.


Why Skill Fleet?

For Technical Teams

  • DSPy-Powered Workflows: Built on DSPy with task-based orchestrators for reliable skill generation
  • FastAPI Architecture: Clean API layer with background tasks, dependency injection, and async support
  • agentskills.io Compliant: Standard YAML frontmatter ensures skills work across different agent frameworks
  • Hierarchical MLflow Tracking: Parent runs for workflows, child runs for each phase

For Decision Makers

  • Modular & Maintainable: Skills are versioned, tracked, and independently testable
  • Standards-Based: Open specification compliance prevents vendor lock-in
  • Scalable: Hierarchical taxonomy supports hundreds of skills with organized growth

For Everyone

  • Easy to Use: Chat interface for creating skills without coding
  • Validated: Automated compliance checking ensures quality
  • Observable: Built-in analytics and usage tracking

Quick Start

Create your first skill in under 2 minutes:

# 1. Install dependencies
uv sync --group dev
cp .env.example .env
# Edit .env and add your GOOGLE_API_KEY

# 2. Start the API server
uv run skill-fleet serve

# 3. Create a skill via chat (in a new terminal)
uv run skill-fleet chat "Create a Python decorators skill"

The skill is created as a draft. After reviewing it in drafts/<job_id>/, promote it:

uv run skill-fleet promote <job_id>

Prerequisites

  • Python: 3.12+
  • Package Manager: uv
  • API Keys: GOOGLE_API_KEY (Gemini is the default model)

Installation

# Clone the repository
git clone https://github.com/Qredence/skill-fleet.git
cd skill-fleet

# Install dependencies
uv sync

# Setup environment
cp .env.example .env
# Edit .env and add your GOOGLE_API_KEY

Interactive Workflows

πŸ’¬ Real-Time Chat

Build skills with streaming updates and live reasoning display:

uv run skill-fleet chat "Create a Redis caching skill"

Features:

  • Real-time progress updates (100ms polling)
  • Live thinking/reasoning display
  • Arrow key navigation for multi-choice questions
  • HITL (Human-in-the-Loop) integration

πŸ“Š Validation & Quality

Validate skills against agentskills.io standards:

# Validate a skill
uv run skill-fleet validate skills/python/decorators

# Check compliance
uv run skill-fleet validate --strict skills/general/testing

🧠 DSPy Optimization

Tune prompts using MIPROv2 or GEPA optimizers:

uv run skill-fleet optimize --optimizer miprov2

API Reference

v1 API (Current)

The v1 API provides comprehensive skill management:

Endpoint Description
POST /api/v1/skills Create skill (starts background job)
GET /api/v1/skills/{id} Get skill details
PUT /api/v1/skills/{id} Update skill
POST /api/v1/skills/{id}/validate Validate skill
POST /api/v1/skills/{id}/refine Refine with feedback
GET /api/v1/jobs/{id} Check job status
GET /api/v1/hitl/{job_id} Poll for HITL prompts
POST /api/v1/hitl/{job_id} Submit HITL response

CLI Commands

Command Description
skill-fleet serve Start FastAPI server
skill-fleet chat Interactive skill creation
skill-fleet list List all skills
skill-fleet promote <id> Promote draft to taxonomy
skill-fleet validate <path> Validate skill
skill-fleet terminal Python-only CLI interface

Project Structure

skill-fleet/
β”œβ”€β”€ src/skill_fleet/
β”‚   β”œβ”€β”€ api/                 # FastAPI application
β”‚   β”‚   β”œβ”€β”€ v1/             # API v1 routes
β”‚   β”‚   β”œβ”€β”€ services/       # Business logic layer
β”‚   β”‚   └── schemas/        # Pydantic models
β”‚   β”œβ”€β”€ cli/                # Typer-based CLI
β”‚   β”‚   └── commands/
β”‚   β”‚       β”œβ”€β”€ chat.py     # Interactive chat
β”‚   β”‚       └── terminal.py # Python-only interface
β”‚   β”œβ”€β”€ core/               # Domain logic
β”‚   β”‚   β”œβ”€β”€ workflows/      # Task-based orchestrators
β”‚   β”‚   β”œβ”€β”€ modules/        # DSPy modules
β”‚   β”‚   └── signatures/     # DSPy signatures
β”‚   β”œβ”€β”€ dspy/               # Centralized DSPy config
β”‚   β”œβ”€β”€ infrastructure/     # Technical infrastructure
β”‚   β”‚   β”œβ”€β”€ db/            # Database layer
β”‚   β”‚   └── tracing/       # MLflow integration
β”‚   β”œβ”€β”€ taxonomy/          # Skill taxonomy management
β”‚   └── validators/        # Skill validation
β”œβ”€β”€ skills/                # Skill taxonomy
β”‚   β”œβ”€β”€ _core/            # Always-loaded skills
β”‚   β”œβ”€β”€ python/           # Python skills
β”‚   β”œβ”€β”€ devops/           # DevOps skills
β”‚   └── ...
β”œβ”€β”€ tests/
β”‚   β”œβ”€β”€ api/              # API tests
β”‚   β”œβ”€β”€ unit/             # Unit tests
β”‚   └── integration/      # Integration tests
β”œβ”€β”€ config/               # Configuration
└── docs/                 # Documentation

Architecture

FastAPI-Centric Design

The v0.3.5 restructure introduces a clean, FastAPI-centric architecture:

  1. API Layer (api/): Routes, schemas, and dependency injection
  2. Service Layer (api/services/): Business logic bridging API to workflows
  3. Workflow Layer (core/workflows/): Task-based DSPy orchestrators
  4. Infrastructure (infrastructure/): Database, tracing, monitoring

Workflow Orchestrators

Three-phase skill creation with HITL support:

  1. Understanding Workflow: Analyzes requirements, generates plan
  2. Generation Workflow: Creates skill content
  3. Validation Workflow: Checks compliance, refines content

Each phase runs in a child MLflow run under a parent workflow run.


Configuration

Environment Variables

Variable Required Description
GOOGLE_API_KEY Yes Gemini API key
SKILL_FLEET_ENV No production or development
SKILL_FLEET_CORS_ORIGINS Prod Allowed origins (comma-separated)
DSPY_CACHEDIR No DSPy cache directory
DSPY_TEMPERATURE No Override LLM temperature

Config File

Edit config/config.yaml for:

  • Model settings (default: gemini/gemini-2-flash)
  • Optimizer configurations (MIPROv2, GEPA)
  • Task-specific model assignments

Development

Running Tests

# Run all tests
uv run pytest

# Run unit tests only
uv run pytest tests/unit/

# Run with coverage
uv run pytest --cov=skill_fleet

Linting & Formatting

# Check and fix
uv run ruff check --fix .

# Format code
uv run ruff format .

Project Standards

  • Python: 3.12+ with modern type hints (str | None)
  • Line Length: 100 characters
  • Quotes: Double quotes
  • Docstrings: Google style
  • Imports: Absolute only, no relative imports

Documentation

Getting Started

Core Concepts

API & Technical

Advanced


Migration from v0.2.x

See docs/api/MIGRATION_V1_TO_V2.md for:

  • Import path changes
  • API endpoint updates
  • Architecture changes
  • Breaking changes and deprecations

License

Apache License 2.0. See LICENSE.

Contributing

See CONTRIBUTING.md for development workflow.


Version: 0.3.5
Status: Production Ready
Last Updated: January 2026

About

No description, website, or topics provided.

Resources

License

Security policy

Stars

Watchers

Forks

Sponsor this project

 

Packages

No packages published

Contributors 9