A modular AI capability platform that creates, manages, and deploys agent skills as reusable, standards-compliant components.
Skill Fleet transforms how AI agents learn by organizing capabilities in a hierarchical taxonomy. Instead of bloated monolithic prompts, skills are modular, versioned, and discoverableβloaded on-demand when agents need them.
Perfect for: AI teams building agent systems, platform engineers managing capability libraries, and organizations standardizing AI knowledge management.
- DSPy-Powered Workflows: Built on DSPy with task-based orchestrators for reliable skill generation
- FastAPI Architecture: Clean API layer with background tasks, dependency injection, and async support
- agentskills.io Compliant: Standard YAML frontmatter ensures skills work across different agent frameworks
- Hierarchical MLflow Tracking: Parent runs for workflows, child runs for each phase
- Modular & Maintainable: Skills are versioned, tracked, and independently testable
- Standards-Based: Open specification compliance prevents vendor lock-in
- Scalable: Hierarchical taxonomy supports hundreds of skills with organized growth
- Easy to Use: Chat interface for creating skills without coding
- Validated: Automated compliance checking ensures quality
- Observable: Built-in analytics and usage tracking
Create your first skill in under 2 minutes:
# 1. Install dependencies
uv sync --group dev
cp .env.example .env
# Edit .env and add your GOOGLE_API_KEY
# 2. Start the API server
uv run skill-fleet serve
# 3. Create a skill via chat (in a new terminal)
uv run skill-fleet chat "Create a Python decorators skill"The skill is created as a draft. After reviewing it in drafts/<job_id>/, promote it:
uv run skill-fleet promote <job_id>- Python: 3.12+
- Package Manager: uv
- API Keys:
GOOGLE_API_KEY(Gemini is the default model)
# Clone the repository
git clone https://github.com/Qredence/skill-fleet.git
cd skill-fleet
# Install dependencies
uv sync
# Setup environment
cp .env.example .env
# Edit .env and add your GOOGLE_API_KEYBuild skills with streaming updates and live reasoning display:
uv run skill-fleet chat "Create a Redis caching skill"Features:
- Real-time progress updates (100ms polling)
- Live thinking/reasoning display
- Arrow key navigation for multi-choice questions
- HITL (Human-in-the-Loop) integration
Validate skills against agentskills.io standards:
# Validate a skill
uv run skill-fleet validate skills/python/decorators
# Check compliance
uv run skill-fleet validate --strict skills/general/testingTune prompts using MIPROv2 or GEPA optimizers:
uv run skill-fleet optimize --optimizer miprov2The v1 API provides comprehensive skill management:
| Endpoint | Description |
|---|---|
POST /api/v1/skills |
Create skill (starts background job) |
GET /api/v1/skills/{id} |
Get skill details |
PUT /api/v1/skills/{id} |
Update skill |
POST /api/v1/skills/{id}/validate |
Validate skill |
POST /api/v1/skills/{id}/refine |
Refine with feedback |
GET /api/v1/jobs/{id} |
Check job status |
GET /api/v1/hitl/{job_id} |
Poll for HITL prompts |
POST /api/v1/hitl/{job_id} |
Submit HITL response |
| Command | Description |
|---|---|
skill-fleet serve |
Start FastAPI server |
skill-fleet chat |
Interactive skill creation |
skill-fleet list |
List all skills |
skill-fleet promote <id> |
Promote draft to taxonomy |
skill-fleet validate <path> |
Validate skill |
skill-fleet terminal |
Python-only CLI interface |
skill-fleet/
βββ src/skill_fleet/
β βββ api/ # FastAPI application
β β βββ v1/ # API v1 routes
β β βββ services/ # Business logic layer
β β βββ schemas/ # Pydantic models
β βββ cli/ # Typer-based CLI
β β βββ commands/
β β βββ chat.py # Interactive chat
β β βββ terminal.py # Python-only interface
β βββ core/ # Domain logic
β β βββ workflows/ # Task-based orchestrators
β β βββ modules/ # DSPy modules
β β βββ signatures/ # DSPy signatures
β βββ dspy/ # Centralized DSPy config
β βββ infrastructure/ # Technical infrastructure
β β βββ db/ # Database layer
β β βββ tracing/ # MLflow integration
β βββ taxonomy/ # Skill taxonomy management
β βββ validators/ # Skill validation
βββ skills/ # Skill taxonomy
β βββ _core/ # Always-loaded skills
β βββ python/ # Python skills
β βββ devops/ # DevOps skills
β βββ ...
βββ tests/
β βββ api/ # API tests
β βββ unit/ # Unit tests
β βββ integration/ # Integration tests
βββ config/ # Configuration
βββ docs/ # Documentation
The v0.3.5 restructure introduces a clean, FastAPI-centric architecture:
- API Layer (
api/): Routes, schemas, and dependency injection - Service Layer (
api/services/): Business logic bridging API to workflows - Workflow Layer (
core/workflows/): Task-based DSPy orchestrators - Infrastructure (
infrastructure/): Database, tracing, monitoring
Three-phase skill creation with HITL support:
- Understanding Workflow: Analyzes requirements, generates plan
- Generation Workflow: Creates skill content
- Validation Workflow: Checks compliance, refines content
Each phase runs in a child MLflow run under a parent workflow run.
| Variable | Required | Description |
|---|---|---|
GOOGLE_API_KEY |
Yes | Gemini API key |
SKILL_FLEET_ENV |
No | production or development |
SKILL_FLEET_CORS_ORIGINS |
Prod | Allowed origins (comma-separated) |
DSPY_CACHEDIR |
No | DSPy cache directory |
DSPY_TEMPERATURE |
No | Override LLM temperature |
Edit config/config.yaml for:
- Model settings (default:
gemini/gemini-2-flash) - Optimizer configurations (MIPROv2, GEPA)
- Task-specific model assignments
# Run all tests
uv run pytest
# Run unit tests only
uv run pytest tests/unit/
# Run with coverage
uv run pytest --cov=skill_fleet# Check and fix
uv run ruff check --fix .
# Format code
uv run ruff format .- Python: 3.12+ with modern type hints (
str | None) - Line Length: 100 characters
- Quotes: Double quotes
- Docstrings: Google style
- Imports: Absolute only, no relative imports
- Getting Started Guide - Installation and first steps
- Quick Start - Streaming chat guide
- System Overview - Architecture and concepts
- AGENTS.md - Comprehensive working guide
- Developer Reference
- API v1 Documentation - REST API reference
- API Migration - v1 to v2 migration guide
- DSPy Framework - Workflow documentation
- Import Path Guide - Import conventions
- Service Extension - Adding services
- HITL System - Human-in-the-Loop
- agentskills.io Compliance - Standards
- Background Jobs - Async job processing
See docs/api/MIGRATION_V1_TO_V2.md for:
- Import path changes
- API endpoint updates
- Architecture changes
- Breaking changes and deprecations
Apache License 2.0. See LICENSE.
See CONTRIBUTING.md for development workflow.
Version: 0.3.5
Status: Production Ready
Last Updated: January 2026