Skip to content

Commit 8fdaf98

Browse files
committed
Fix spelling and grammar in mccall_risk lecture
- Add parentheses around MGF abbreviation for clarity - Fix subject-verb agreement: change 'decrease' to 'decreases'
1 parent 3e3f4f7 commit 8fdaf98

File tree

1 file changed

+23
-33
lines changed

1 file changed

+23
-33
lines changed

lectures/mccall_risk.md

Lines changed: 23 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -39,8 +39,6 @@ job search.
3939

4040
Some motivation is given below.
4141

42-
+++
43-
4442
## Outline
4543

4644
In real-world job-related decisions, individuals and households care about risk.
@@ -98,16 +96,14 @@ Sometimes we want to model agents as risk averse.
9896
One way to do this is to change their evaluation of the payoff $Y$ to
9997

10098
$$
101-
e_{\theta} = \frac{1}{\theta} \ln\left( \mathbb{E} [ \exp(\theta Y) ] \right)
99+
e_{\theta} = \frac{1}{\theta} \ln\left( \mathbb{E} [ \exp(\theta Y) ] \right)
102100
$$
103101

104102
where $\theta$ is a number satisfying $\theta < 0$.
105103

106104
The value $e_{\theta}$ is sometimes called the **entropic risk-adjusted
107105
expectation** of $Y$.
108106

109-
+++
110-
111107
### A Gaussian example
112108

113109
One way to see the impact is to suppose that $Y$ has the normal distribution
@@ -117,7 +113,7 @@ For this $Y$ we aim to compute the risk-adjusted expectation.
117113

118114
This becomes straightforward if we recognize that $\mathbb{E}[\exp(\theta Y)]$
119115
is the [moment generating
120-
function](https://en.wikipedia.org/wiki/Moment-generating_function) MGF of the
116+
function](https://en.wikipedia.org/wiki/Moment-generating_function) (MGF) of the
121117
normal distribution.
122118

123119
Using the well-known expression for the MGF of the normal distribution, we get
@@ -129,15 +125,15 @@ $$
129125
Therefore,
130126

131127
$$
132-
e_\theta
133-
= \frac{1}{\theta} \ln\left( \exp\left(\theta\mu + \frac{\theta^2\sigma^2}{2}\right) \right)
134-
= \frac{1}{\theta} \left(\theta\mu + \frac{\theta^2\sigma^2}{2}\right)
128+
e_\theta
129+
= \frac{1}{\theta} \ln\left( \exp\left(\theta\mu + \frac{\theta^2\sigma^2}{2}\right) \right)
130+
= \frac{1}{\theta} \left(\theta\mu + \frac{\theta^2\sigma^2}{2}\right)
135131
$$
136132

137133
Simplifying yields
138134

139135
$$
140-
e_\theta = \mu + \frac{\theta\sigma^2}{2}
136+
e_\theta = \mu + \frac{\theta\sigma^2}{2}
141137
$$
142138

143139
We see immediately that the agent prefers a higher average payoff $\mu$.
@@ -178,8 +174,6 @@ plt.show()
178174

179175
Again, we see that the agent prefers a higher average payoff but dislikes risk.
180176

181-
+++
182-
183177
### A more general case
184178

185179
The preceding analysis relies on the Gaussian (normal) assumption to get an
@@ -251,8 +245,6 @@ As $\theta$ becomes more negative, $e_\theta$ decreases.
251245
This reflects that a more risk-averse agent values the uncertain payoff $Y$ less
252246
than its expected value.
253247

254-
+++
255-
256248
### A mean preserving spread
257249

258250
The next exercise asks you to study the impact of a mean-preserving spread on
@@ -266,7 +258,7 @@ Keep $Y \sim \text{Beta}(2, 2)$ and fix $\theta = -2$.
266258
Using Monte Carlo again, calculate
267259
268260
$$
269-
e_{\theta} = \frac{1}{\theta} \ln\left( \mathbb{E} [ \exp(\theta X) ] \right)
261+
e_{\theta} = \frac{1}{\theta} \ln\left( \mathbb{E} [ \exp(\theta X) ] \right)
270262
$$
271263
272264
where $X = Y + \sigma Z$ and $Z$ is standard normal.
@@ -337,13 +329,13 @@ Since the agent is risk averse ($\theta = -2 < 0$), she dislikes uncertainty.
337329
As we increase $\sigma$, we get more volatility, since
338330

339331
$$
340-
\text{Var}(X) = \text{Var}(Y) + \sigma^2 \text{Var}(Z) = \text{Var}(Y) + \sigma^2
332+
\text{Var}(X) = \text{Var}(Y) + \sigma^2 \text{Var}(Z) = \text{Var}(Y) + \sigma^2
341333
$$
342334

343335
At the same time, the expected value is unchanged, since
344336

345337
$$
346-
\mathbb{E}[X] = \mathbb{E}[Y + \sigma Z] = \mathbb{E}[Y] + \sigma \mathbb{E}[Z] = \mathbb{E}[Y] = 0.5
338+
\mathbb{E}[X] = \mathbb{E}[Y + \sigma Z] = \mathbb{E}[Y] + \sigma \mathbb{E}[Z] = \mathbb{E}[Y] = 0.5
347339
$$
348340

349341
Hence the mean payoff doesn't change with $\sigma$.
@@ -381,14 +373,12 @@ $$
381373

382374
from that lecture is replaced with
383375

384-
+++
385-
386376
$$
387-
(P_\theta v_u)(w)
388-
= \frac{1}{\theta} \ln
389-
\left[
390-
\mathbb{E} \exp(\theta v_u( w^\rho \exp(\nu Z) ))
391-
\right]
377+
(P_\theta v_u)(w)
378+
= \frac{1}{\theta} \ln
379+
\left[
380+
\mathbb{E} \exp(\theta v_u( w^\rho \exp(\nu Z) ))
381+
\right]
392382
$$
393383

394384
Otherwise the model is the same.
@@ -443,19 +433,19 @@ First we use the employed worker's Bellman equation to express
443433
$v_e(w)$ in terms of $(P_\theta v_u)(w)$:
444434

445435
$$
446-
v_e(w) =
447-
\frac{1}{1-\beta(1-\alpha)} \cdot (u(w) + \alpha\beta(P_\theta v_u)(w))
436+
v_e(w) =
437+
\frac{1}{1-\beta(1-\alpha)} \cdot (u(w) + \alpha\beta(P_\theta v_u)(w))
448438
$$
449439

450440
We substitute into the unemployed agent's Bellman equation to get:
451441

452442
$$
453-
v_u(w) =
454-
\max
455-
\left\{
456-
\frac{1}{1-\beta(1-\alpha)} \cdot (u(w) + \alpha\beta(P_\theta v_u)(w)),
457-
u(c) + \beta(P_\theta v_u)(w)
458-
\right\}
443+
v_u(w) =
444+
\max
445+
\left\{
446+
\frac{1}{1-\beta(1-\alpha)} \cdot (u(w) + \alpha\beta(P_\theta v_u)(w)),
447+
u(c) + \beta(P_\theta v_u)(w)
448+
\right\}
459449
$$
460450

461451
We use value function iteration to solve for $v_u$.
@@ -757,7 +747,7 @@ plt.tight_layout()
757747
plt.show()
758748
```
759749

760-
We see that the unemployment rate decrease as the agent becomes more risk averse
750+
We see that the unemployment rate decreases as the agent becomes more risk averse
761751
(more negative $\theta$).
762752

763753
This is because more risk-averse workers have lower reservation wages,

0 commit comments

Comments
 (0)