@@ -39,8 +39,6 @@ job search.
3939
4040Some motivation is given below.
4141
42- +++
43-
4442## Outline
4543
4644In real-world job-related decisions, individuals and households care about risk.
@@ -98,16 +96,14 @@ Sometimes we want to model agents as risk averse.
9896One way to do this is to change their evaluation of the payoff $Y$ to
9997
10098$$
101- e_{\theta} = \frac{1}{\theta} \ln\left( \mathbb{E} [ \exp(\theta Y) ] \right)
99+ e_{\theta} = \frac{1}{\theta} \ln\left( \mathbb{E} [ \exp(\theta Y) ] \right)
102100$$
103101
104102where $\theta$ is a number satisfying $\theta < 0$.
105103
106104The value $e_ {\theta}$ is sometimes called the ** entropic risk-adjusted
107105expectation** of $Y$.
108106
109- +++
110-
111107### A Gaussian example
112108
113109One way to see the impact is to suppose that $Y$ has the normal distribution
@@ -117,7 +113,7 @@ For this $Y$ we aim to compute the risk-adjusted expectation.
117113
118114This becomes straightforward if we recognize that $\mathbb{E}[ \exp(\theta Y)] $
119115is the [ moment generating
120- function] ( https://en.wikipedia.org/wiki/Moment-generating_function ) MGF of the
116+ function] ( https://en.wikipedia.org/wiki/Moment-generating_function ) ( MGF) of the
121117normal distribution.
122118
123119Using the well-known expression for the MGF of the normal distribution, we get
129125Therefore,
130126
131127$$
132- e_\theta
133- = \frac{1}{\theta} \ln\left( \exp\left(\theta\mu + \frac{\theta^2\sigma^2}{2}\right) \right)
134- = \frac{1}{\theta} \left(\theta\mu + \frac{\theta^2\sigma^2}{2}\right)
128+ e_\theta
129+ = \frac{1}{\theta} \ln\left( \exp\left(\theta\mu + \frac{\theta^2\sigma^2}{2}\right) \right)
130+ = \frac{1}{\theta} \left(\theta\mu + \frac{\theta^2\sigma^2}{2}\right)
135131$$
136132
137133Simplifying yields
138134
139135$$
140- e_\theta = \mu + \frac{\theta\sigma^2}{2}
136+ e_\theta = \mu + \frac{\theta\sigma^2}{2}
141137$$
142138
143139We see immediately that the agent prefers a higher average payoff $\mu$.
@@ -178,8 +174,6 @@ plt.show()
178174
179175Again, we see that the agent prefers a higher average payoff but dislikes risk.
180176
181- +++
182-
183177### A more general case
184178
185179The preceding analysis relies on the Gaussian (normal) assumption to get an
@@ -251,8 +245,6 @@ As $\theta$ becomes more negative, $e_\theta$ decreases.
251245This reflects that a more risk-averse agent values the uncertain payoff $Y$ less
252246than its expected value.
253247
254- +++
255-
256248### A mean preserving spread
257249
258250The next exercise asks you to study the impact of a mean-preserving spread on
@@ -266,7 +258,7 @@ Keep $Y \sim \text{Beta}(2, 2)$ and fix $\theta = -2$.
266258Using Monte Carlo again, calculate
267259
268260$$
269- e_{\theta} = \frac{1}{\theta} \ln\left( \mathbb{E} [ \exp(\theta X) ] \right)
261+ e_{\theta} = \frac{1}{\theta} \ln\left( \mathbb{E} [ \exp(\theta X) ] \right)
270262$$
271263
272264where $X = Y + \sigma Z$ and $Z$ is standard normal.
@@ -337,13 +329,13 @@ Since the agent is risk averse ($\theta = -2 < 0$), she dislikes uncertainty.
337329As we increase $\sigma$, we get more volatility, since
338330
339331$$
340- \text{Var}(X) = \text{Var}(Y) + \sigma^2 \text{Var}(Z) = \text{Var}(Y) + \sigma^2
332+ \text{Var}(X) = \text{Var}(Y) + \sigma^2 \text{Var}(Z) = \text{Var}(Y) + \sigma^2
341333$$
342334
343335At the same time, the expected value is unchanged, since
344336
345337$$
346- \mathbb{E}[X] = \mathbb{E}[Y + \sigma Z] = \mathbb{E}[Y] + \sigma \mathbb{E}[Z] = \mathbb{E}[Y] = 0.5
338+ \mathbb{E}[X] = \mathbb{E}[Y + \sigma Z] = \mathbb{E}[Y] + \sigma \mathbb{E}[Z] = \mathbb{E}[Y] = 0.5
347339$$
348340
349341Hence the mean payoff doesn't change with $\sigma$.
381373
382374from that lecture is replaced with
383375
384- +++
385-
386376$$
387- (P_\theta v_u)(w)
388- = \frac{1}{\theta} \ln
389- \left[
390- \mathbb{E} \exp(\theta v_u( w^\rho \exp(\nu Z) ))
391- \right]
377+ (P_\theta v_u)(w)
378+ = \frac{1}{\theta} \ln
379+ \left[
380+ \mathbb{E} \exp(\theta v_u( w^\rho \exp(\nu Z) ))
381+ \right]
392382$$
393383
394384Otherwise the model is the same.
@@ -443,19 +433,19 @@ First we use the employed worker's Bellman equation to express
443433$v_e(w)$ in terms of $(P_ \theta v_u)(w)$:
444434
445435$$
446- v_e(w) =
447- \frac{1}{1-\beta(1-\alpha)} \cdot (u(w) + \alpha\beta(P_\theta v_u)(w))
436+ v_e(w) =
437+ \frac{1}{1-\beta(1-\alpha)} \cdot (u(w) + \alpha\beta(P_\theta v_u)(w))
448438$$
449439
450440We substitute into the unemployed agent's Bellman equation to get:
451441
452442$$
453- v_u(w) =
454- \max
455- \left\{
456- \frac{1}{1-\beta(1-\alpha)} \cdot (u(w) + \alpha\beta(P_\theta v_u)(w)),
457- u(c) + \beta(P_\theta v_u)(w)
458- \right\}
443+ v_u(w) =
444+ \max
445+ \left\{
446+ \frac{1}{1-\beta(1-\alpha)} \cdot (u(w) + \alpha\beta(P_\theta v_u)(w)),
447+ u(c) + \beta(P_\theta v_u)(w)
448+ \right\}
459449$$
460450
461451We use value function iteration to solve for $v_u$.
@@ -757,7 +747,7 @@ plt.tight_layout()
757747plt.show()
758748```
759749
760- We see that the unemployment rate decrease as the agent becomes more risk averse
750+ We see that the unemployment rate decreases as the agent becomes more risk averse
761751(more negative $\theta$).
762752
763753This is because more risk-averse workers have lower reservation wages,
0 commit comments