Skip to content

QuantumCoderrr/BuildCast

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🏗️ BuildCast - Building Energy Prediction

This project is a machine learning pipeline for predicting building energy usage using synthetic datasets.
It includes data preprocessing, model training (LightGBM + PyTorch), evaluation, and visualization of results.


📌 Features

  • Preprocessing with StandardScaler and OneHotEncoder
  • LightGBM baseline model for regression
  • PyTorch neural network model implementation
  • Evaluation metrics: MAE, RMSE, R²
  • Graphical visualization of predicted vs actual values
  • Synthetic dataset generation with 20,000 data points for better visualization

📂 Project Structure

📦 Building-Energy-Prediction

  • 📜 main.py # Main training + evaluation pipeline
  • 📜 requirements.txt # Dependencies
  • 📜 buildings.csv # Example dataset
  • 📜 README.md # Project documentation

⚙️ Installation

  1. Clone the repository:
git clone https://github.com/QuantumCoderrr/BuildCast.git
cd BuildCast
  1. Create a virtual environment & install dependencies:
python -m venv venv
source venv/bin/activate   # On Mac/Linux
venv\Scripts\activate      # On Windows

pip install -r requirements.txt

▶️ Usage

  1. Run with existing dataset
python main.py
  1. Generate & use synthetic dataset (20,000 points)
python generate_dataset.py
python main.py

📊 Visualization

The model outputs a scatter plot comparing actual vs predicted energy usage. This helps visualize how well the model generalizes on test data.

📈 Example Output

Metrics (MAE, RMSE, R²) printed on console Scatter plot of predictions vs actual values

🛠️ Tech Stack

Python 3.11+ Pandas, NumPy Scikit-learn LightGBM PyTorch Matplotlib


👩‍💻 Author

Sandip Ghosh, Aishika Majumdar and Sandhita Poddar


📜 License

This project is licensed under the MIT License. Feel free to use, modify, and share with proper attribution.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages