-
Notifications
You must be signed in to change notification settings - Fork 1.7k
Description
是否已有关于该错误的issue或讨论? | Is there an existing issue / discussion for this?
- 我已经搜索过已有的issues和讨论 | I have searched the existing issues / discussions
该问题是否在FAQ中有解答? | Is there an existing answer for this in FAQ?
- 我已经搜索过FAQ | I have searched FAQ
当前行为 | Current Behavior
我的数据准备采用官方提供的格式,例如:
{"id": "identity_0", "conversations": [{"from": "user", "value": "你是一个说话人识别助手,请根据下面的发言内容和聚类结果,修正说话人编号。\n每段发言已经分配了聚类编号(如 0, 1, 2...),但这些编号可能不准确。\n请你重新分配编号为 spk_A、spk_B 等,确保相同说话人编号一致,不需要输出原始文本内容。\n\n说话人 1:My team works across research and product to incubate\n说话人 1:across research and product to incubate emerging technologies\n说话人 1:and product to incubate emerging technologies\n说话人 1:to incubate emerging technologies and runs programs\n说话人 1:emerging technologies and runs programs that connect our\n说话人 1:technologies and runs programs that connect our research at Microsoft\n说话人 1:and runs programs that connect our research at Microsoft\n说话人 1:programs that connect our research at Microsoft to the broader research\n说话人 1:our research at Microsoft to the broader research community.\n说话人 1:I sat down with research leaders, AJ Kumar,\n说话人 1:research leaders, AJ Kumar, Ahmed Awadallah,\n说话人 1:AJ Kumar, Ahmed Awadallah,\n说话人 1:Kumar, Ahmed Awadallah, and Sebastian Bubeck\n说话人 1:Ahmed Awadallah, and Sebastian Bubeck\n说话人 1:Awadallah, and Sebastian Bubeck to explore some\n说话人 1:and Sebastian Bubeck to explore some of the most exciting\n说话人 1:Bubeck to explore some of the most exciting new frontiers\n说话人 1:to explore some of the most exciting new frontiers in AI.\n说话人 1:some of the most exciting new frontiers in AI.\n说话人 1:We discussed their aspirations for AI, the research directions\n\n修正后的说话人编号(每行一个编号):"}, {"from": "assistant", "value": "spk_A\nspk_A\nspk_A\nspk_A\nspk_A\nspk_A\nspk_A\nspk_A\nspk_A\nspk_A\nspk_A\nspk_A\nspk_A\nspk_A\nspk_A\nspk_A\nspk_A\nspk_A\nspk_A\nspk_A"}]}
训练的shell脚本是用finetune_lora_ds.sh,配置文件没有改动
期望行为 | Expected Behavior
decode代码如下:
import time
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "./Qwen/output_qwen"
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", trust_remote_code=True)
model.eval()
Step 4: 构造 prompt,进行推理
prompt = "你是一个说话人识别助手,请根据下面的发言内容和聚类结果,修正说话人编号。\n每段发言已经分配了聚类编号(如 0, 1, 2...),但这些编号可能不准确。\n请你重新分配编号为 spk_A、spk_B 等,确保相同说话人编号一致,不需要输出原始文本内容。\n\n说话人 1:My team works across research and product to incubate\n说话人 1:across research and product to incubate emerging technologies\n说话人 1:and product to incubate emerging technologies\n说话人 1:to incubate emerging technologies and runs programs\n说话人 1:emerging technologies and runs programs that connect our\n说话人 1:technologies and runs programs that connect our research at Microsoft\n说话人 1:and runs programs that connect our research at Microsoft\n说话人 1:programs that connect our research at Microsoft to the broader research\n说话人 1:our research at Microsoft to the broader research community.\n说话人 1:I sat down with research leaders, AJ Kumar,\n说话人 1:research leaders, AJ Kumar, Ahmed Awadallah,\n说话人 1:AJ Kumar, Ahmed Awadallah,\n说话人 1:Kumar, Ahmed Awadallah, and Sebastian Bubeck\n说话人 1:Ahmed Awadallah, and Sebastian Bubeck\n说话人 1:Awadallah, and Sebastian Bubeck to explore some\n说话人 1:and Sebastian Bubeck to explore some of the most exciting\n说话人 1:Bubeck to explore some of the most exciting new frontiers\n说话人 1:to explore some of the most exciting new frontiers in AI.\n说话人 1:some of the most exciting new frontiers in AI.\n说话人 1:We discussed their aspirations for AI, the research directions\n\n修正后的说话人编号(每行一个编号):"
start = time.time()
inputs = tokenizer(prompt, return_tensors='pt', max_length=8192, truncation=True)
inputs = inputs.to('cuda:0')
pred = model.generate(**inputs, num_return_sequences=1, repetition_penalty=1.1)
output = tokenizer.decode(pred.cpu()[0], skip_special_tokens=True)
output = output.replace(prompt, "")
print(output)
期望输出Spk_A,。。。但是实际输出的是空,什么都没有输出
从训练loss上看,收敛的很好,大概到0.01,想请教一下是什么问题导致模型decode的时候输出为空
复现方法 | Steps To Reproduce
No response
运行环境 | Environment
- OS:
- Python:
- Transformers:
- PyTorch:
- CUDA (`python -c 'import torch; print(torch.version.cuda)'`):备注 | Anything else?
No response