Skip to content

Rohit140220/Python-Project

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

11 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Python-Project

🌍 Landslide Data Analysis & Visualization

This project performs a detailed exploratory data analysis (EDA) on a landslide dataset using Python, pandas, matplotlib, and seaborn. The goal is to uncover meaningful patterns, trends, and outliers related to landslide occurrences, helping researchers or decision-makers understand environmental and human factors.

πŸ“Š Key Features

  • Correlation heatmap of all numerical features
  • Monthly frequency of landslides
  • Environmental condition distributions:
    • Precipitation
    • Temperature
    • Slope Angle
  • Population density vs. Landslide category
  • Types of landslides
  • Top 10 locations with most landslides
  • Landslides by day of the week
  • Landslides by hour of the day
  • Outlier detection using IQR for:
    • Fatalities
    • Injuries
    • Economic loss

βœ… All visualizations display automatically in sequence with fallback (dummy) data generated for missing columns.


🧠 Technologies Used

  • Python 3.x
  • pandas
  • seaborn
  • matplotlib
  • numpy

πŸ—‚ Dataset

The dataset used is expected to be a CSV file with a minimum column named:

  • event_date (used to extract month, hour, day)

Optional (but auto-filled if missing):

  • precipitation
  • temperature
  • slope_angle
  • population_density
  • landslide_category
  • landslide_type
  • location
  • fatalities, injuries, economic_loss

πŸš€ How to Run

  1. Clone the repository:
    git clone https://github.com/your-username/landslide-eda.git
    cd landslide-eda

About

Analysing the data using libraries in python

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published