Skip to content

SahanaRamnath/Basic-Tensorflow-Codes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Basic-Tensorflow-Codes

This repository contains codes for implementation of ML and DL algorithms in tensorflow.

Dependencies

  • Libraries tensorflow,matplotlib and numpy in python 2.x

Codes

  • basics_math.py : Basics of creating and using tensors and plotting graphs.
  • linreg.py : Implementing linear regression on a generated set of points.
  • polyreg.py : Implementing regression with polynomial features on a generated set of points.
  • logreg.py : Implementing logistic regression using a single layer neural net on the MNIST data set.
  • Feedforward_NN/ffnn_raw_tf.py : Implementing a 2-layer feedforward neural network to classify the MNIST data set(Raw Tensorflow Implementation)
  • Feedforward_NN/ffnn_using_layers_tf.py : Implementing a 2-layer feedforward neural network to classify the MNIST data set(Implemented using tf.layers.dense and tf.estimatorAPIs) .
  • CNN/cnn_raw_tf.py : Implementing a convolutional neural network to classify the MNIST data set(Raw Tensorflow Implementation)
  • RNN/singlelayer_lstm_mnist.py : Implementing a single(hidden)layer RNN-LSTM to classify the MNIST data set.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages