This repository contains codes for implementation of ML and DL algorithms in tensorflow.
- Libraries tensorflow,matplotlib and numpy in python 2.x
- basics_math.py : Basics of creating and using tensors and plotting graphs.
- linreg.py : Implementing linear regression on a generated set of points.
- polyreg.py : Implementing regression with polynomial features on a generated set of points.
- logreg.py : Implementing logistic regression using a single layer neural net on the MNIST data set.
- Feedforward_NN/ffnn_raw_tf.py : Implementing a 2-layer feedforward neural network to classify the MNIST data set(Raw Tensorflow Implementation)
- Feedforward_NN/ffnn_using_layers_tf.py : Implementing a 2-layer feedforward neural network to classify the MNIST data set(Implemented using
tf.layers.denseandtf.estimatorAPIs) . - CNN/cnn_raw_tf.py : Implementing a convolutional neural network to classify the MNIST data set(Raw Tensorflow Implementation)
- RNN/singlelayer_lstm_mnist.py : Implementing a single(hidden)layer RNN-LSTM to classify the MNIST data set.