AI-powered sign language detection using deep learning and React.
Windows:
run.batChoose options from the menu to install, train, and run.
Manual Setup:
# 1. Install dependencies
pip install -r requirements.txt
cd frontend && npm install && cd ..
# 2. Train model (30-60 min)
python ML/train_v2.py
# 3. Start backend (Terminal 1)
python backend/main.py
# 4. Start frontend (Terminal 2)
cd frontend && npm run devURLs:
- Frontend: http://localhost:3000
- Backend: http://localhost:8000
- API Docs: http://localhost:8000/docs
SLI/
├── backend/ # FastAPI server
│ ├── main.py # API endpoints
│ ├── model_v2.onnx # AI model
│ └── class_labels.txt # 43 sign classes
├── frontend/ # React app
│ ├── src/ # Components
│ └── dist/ # Production build
├── ML/ # Training scripts
│ ├── train_v2.py # Main training
│ └── inference.py # Test model
├── data/ # Training images (43 classes)
├── run.bat # Main launcher
└── requirements.txt # Python dependencies
- Real-time webcam detection
- 43 sign language phrases
- Multi-language translation (9 languages)
- Detection history tracking
- 85-95% accuracy
- FastAPI backend with REST API
- React frontend with TailwindCSS
Backend:
- Python, TensorFlow, FastAPI, ONNX Runtime
Frontend:
- React, Vite, TailwindCSS, Framer Motion
Model:
- EfficientNetB3 (transfer learning)
- Input: 300×300 RGB images
- Output: 43 classes
- Size: ~50MB
Port in use:
netstat -ano | findstr :8000
taskkill /PID <pid> /FModel not found:
python ML/train_v2.pyDependencies error:
pip install -r requirements.txt --force-reinstall- API Docs: http://localhost:8000/docs
- TensorFlow: https://www.tensorflow.org
- FastAPI: https://fastapi.tiangolo.com