To write a program to implement the the Logistic Regression Using Gradient Descent.
- Hardware – PCs
- Anaconda – Python 3.7 Installation / Jupyter notebook
- Import necessary libraries (pandas, numpy, matplotlib)
- Load dataset from 'Placement_Data.csv'
- Drop unnecessary columns ('sl_no', 'salary')
- Convert categorical variables to category data type
- Encode categorical variables to numerical values
- Set features X (all columns except 'status')
- Set target variable Y (column 'status')
- Initialize weights theta randomly
- Define sigmoid function
- Define loss function
- Implement gradient descent function:
- Compute predicted probabilities
- Update weights using gradients
- Train the model by calling gradient descent function
- Define prediction function
- Evaluate the model by calculating accuracy
- Test with new input data and print predictions
- Print accuracy and predictions
/*
Program to implement the the Logistic Regression Using Gradient Descent.
Developed by: SANJAI.R
RegisterNumber: 212223040180
*/
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
dataset=pd.read_csv("C:/Users/admin/Downloads/Placement_Data.csv")
dataset
dataset=dataset.drop('sl_no',axis=1)
dataset=dataset.drop('salary',axis=1)
dataset["gender"]=dataset["gender"].astype('category')
dataset["ssc_b"]=dataset["ssc_b"].astype('category')
dataset["hsc_b"]=dataset["hsc_b"].astype('category')
dataset["degree_t"]=dataset["degree_t"].astype('category')
dataset["workex"]=dataset["workex"].astype('category')
dataset["specialisation"]=dataset["specialisation"].astype('category')
dataset["status"]=dataset["status"].astype('category')
dataset["hsc_s"]=dataset["hsc_s"].astype('category')
dataset.dtypes
dataset["gender"]=dataset["gender"].cat.codes
dataset["ssc_b"]=dataset["ssc_b"].cat.codes
dataset["hsc_b"]=dataset["hsc_b"].cat.codes
dataset["degree_t"]=dataset["degree_t"].cat.codes
dataset["workex"]=dataset["workex"].cat.codes
dataset["specialisation"]=dataset["specialisation"].cat.codes
dataset["status"]=dataset["status"].cat.codes
dataset["hsc_s"]=dataset["hsc_s"].cat.codes
dataset
X=dataset.iloc[:,:-1].values
Y=dataset.iloc[:,-1].values
Y
theta=np.random.randn(X.shape[1])
y=Y
def sigmoid(z):
return 1 /(1+np.exp(-z))
def loss(theta,X,y):
h=sigmoid(x.dot(theta))
return -np.sum(y*np.log(h)+(1-y)*np.log(1-h))
def gradient_descent(theta,X,y,alpha,num_iterations):
m=len(y)
for i in range(num_iterations):
h=sigmoid(X.dot(theta))
gradient=X.T.dot(h-y)/m
theta-=alpha*gradient
return theta
theta=gradient_descent(theta,X,y,alpha=0.01,num_iterations=1000)
def predict(theta,X):
h=sigmoid(X.dot(theta))
y_pred=np.where(h>=0.5,1,0)
return y_pred
y_pred=predict(theta,X)
accuracy=np.mean(y_pred.flatten()==y)
print("Accuracy:",accuracy)
print(y_pred)
print(Y)
xnew=np.array([[0,87,0,95,0,2,78,2,0,0,1,0]])
y_prednew=predict(theta,xnew)
print(y_prednew)
xnew=np.array([[0,0,0,0,0,2,8,2,0,0,1,0]])
y_prednew=predict(theta,xnew)
print(y_prednew)Thus the program to implement the the Logistic Regression Using Gradient Descent is written and verified using python programming.
