Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions docs/src/tutorials/ARK_order_conditions.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

Consider an ordinary differential equation (ODE) of the form
```math
u'(t) = \sum_\nu^N f^\nu(t, u(t)).
u'(t) = \sum_{\nu=1}^N f^\nu(t, u(t)).
```

An additive Runge-Kutta (ARK) method with ``s`` stages is given by its
Expand All @@ -21,8 +21,8 @@ is assumed, which reduces all analysis to autonomous problems.
The step from ``u^{n}`` to ``u^{n+1}`` is given by
```math
\begin{aligned}
y^i &= u^n + \Delta t \sum_\nu \sum_j a^\nu_{i,j} f^\nu(y^i), \\
u^{n+1} &= u^n + \Delta t \sum_\nu \sum_i b^\nu_{i} f^\nu(y^i),
y^i &= u^n + \Delta t \sum_\nu \sum_j a^\nu_{i,j} f^\nu(t^n + c_j \Delta t, y^j), \\
u^{n+1} &= u^n + \Delta t \sum_\nu \sum_i b^\nu_{i} f^\nu(t^n + c_i \Delta t, y^i),
\end{aligned}
```
where ``y^i`` are the stage values.
Expand All @@ -34,7 +34,7 @@ ARK methods are represented as

## Order conditions

The order conditions of RK methods can be derived using colored rooted trees.
The order conditions of ARK methods can be derived using colored rooted trees.
In [RootedTrees.jl](https://github.com/SciML/RootedTrees.jl), this
functionality is implemented in [`residual_order_condition`](@ref).
Thus, an [`AdditiveRungeKuttaMethod`](@ref) is of order ``p`` if the
Expand Down
2 changes: 1 addition & 1 deletion docs/src/tutorials/RK_order_conditions.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ is assumed, which reduces all analysis to autonomous problems.
The step from ``u^{n}`` to ``u^{n+1}`` is given by
```math
\begin{aligned}
y^i &= u^n + \Delta t \sum_j a_{i,j} f(t^n + c_i \Delta t, y^i), \\
y^i &= u^n + \Delta t \sum_j a_{i,j} f(t^n + c_j \Delta t, y^j), \\
u^{n+1} &= u^n + \Delta t \sum_i b_{i} f(t^n + c_i \Delta t, y^i),
\end{aligned}
```
Expand Down
2 changes: 1 addition & 1 deletion docs/src/tutorials/Rosenbrock_order_conditions.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ is assumed, which reduces all analysis to autonomous problems.
The step from ``u^{n}`` to ``u^{n+1}`` is given by
```math
\begin{aligned}
k^i &= \Delta t f\bigl(u^n + \sum_j a_{i,j} k^j \bigr) + \Delta t J \sum_j \gamma_{ij} k_j, \\
k^i &= \Delta t f\bigl(u^n + \sum_j a_{i,j} k^j \bigr) + \Delta t J \sum_j \gamma_{ij} k^j, \\
u^{n+1} &= u^n + \sum_i b_{i} k^i.
\end{aligned}
```
Expand Down
4 changes: 2 additions & 2 deletions docs/src/tutorials/basics.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ end

Depending on your background, you may be more familiar with the classical
notation used in the books of Butcher or Hairer & Wanner. You can get these
representation via [`butcher_representation`](@ref).
representations via [`butcher_representation`](@ref).

```@example basics
for t in RootedTreeIterator(4)
Expand Down Expand Up @@ -92,7 +92,7 @@ for t in RootedTreeIterator(4)
end
```

![latex elemenary weights](https://private-user-images.githubusercontent.com/125130707/298310491-8a035faf-fd1a-4fc0-92be-c3387eb53177.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MDYxNjY1ODAsIm5iZiI6MTcwNjE2NjI4MCwicGF0aCI6Ii8xMjUxMzA3MDcvMjk4MzEwNDkxLThhMDM1ZmFmLWZkMWEtNGZjMC05MmJlLWMzMzg3ZWI1MzE3Ny5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjQwMTI1JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI0MDEyNVQwNzA0NDBaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT1kYzQyYjM0MWY0MDU5YWZlYzBmODA4MjFiZGIxN2E3YjhkYTdmZDNkYTU5NmI5OTEwNWFiZjg0OGZjNDg1MzZhJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCZhY3Rvcl9pZD0wJmtleV9pZD0wJnJlcG9faWQ9MCJ9.GB-PigOlQqenzgruzWg19qslzM6RXeX4xWwCNreOvNY)
![latex elementary weights](https://private-user-images.githubusercontent.com/125130707/298310491-8a035faf-fd1a-4fc0-92be-c3387eb53177.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MDYxNjY1ODAsIm5iZiI6MTcwNjE2NjI4MCwicGF0aCI6Ii8xMjUxMzA3MDcvMjk4MzEwNDkxLThhMDM1ZmFmLWZkMWEtNGZjMC05MmJlLWMzMzg3ZWI1MzE3Ny5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjQwMTI1JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI0MDEyNVQwNzA0NDBaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT1kYzQyYjM0MWY0MDU5YWZlYzBmODA4MjFiZGIxN2E3YjhkYTdmZDNkYTU5NmI5OTEwNWFiZjg0OGZjNDg1MzZhJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCZhY3Rvcl9pZD0wJmtleV9pZD0wJnJlcG9faWQ9MCJ9.GB-PigOlQqenzgruzWg19qslzM6RXeX4xWwCNreOvNY)


## Number of trees
Expand Down
2 changes: 1 addition & 1 deletion src/colored_trees.jl
Original file line number Diff line number Diff line change
Expand Up @@ -393,7 +393,7 @@ end
"""
BicoloredRootedTreeIterator(order::Integer)

Iterator over all bi-colored rooted trees of given `order`. The returned trees
Iterator over all bicolored rooted trees of given `order`. The returned trees
are views to an internal tree modified during the iteration. If the returned
trees shall be stored or modified during the iteration, a `copy` has to be made.
"""
Expand Down
4 changes: 2 additions & 2 deletions src/time_integration_methods.jl
Original file line number Diff line number Diff line change
Expand Up @@ -148,8 +148,8 @@ An additive Runge-Kutta method applied to the ODE problem
has the form
```math
\\begin{aligned}
y^i &= u^n + \\Delta t \\sum_\\nu \\sum_j a^\\nu_{i,j} f^\\nu(y^i), \\\\
u^{n+1} &= u^n + \\Delta t \\sum_\\nu \\sum_i b^\\nu_{i} f^\\nu(y^i).
y^i &= u^n + \\Delta t \\sum_\\nu \\sum_j a^\\nu_{i,j} f^\\nu(t^n + c_j \\Delta t, y^j), \\\\
u^{n+1} &= u^n + \\Delta t \\sum_\\nu \\sum_i b^\\nu_{i} f^\\nu(t^n + c_i \\Delta t, y^i).
\\end{aligned}
```

Expand Down
Loading