Skip to content

Siddhi2325/Deep-Autoencoder-Lab

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

2 Commits
ย 
ย 
ย 
ย 

Repository files navigation

Deep-Autoencoder-Lab

Implementation of an Autoencoder neural network for image reconstruction and dimensionality reduction using TensorFlow/Keras, including training, evaluation, and visualization of reconstructed outputs.

Autoencoder-Based Image Reconstruction

This repository contains the implementation of a Deep Autoencoder for image reconstruction and feature compression.
The project is implemented in Jupyter Notebook (Lab08_Autoencoder.ipynb) using TensorFlow / Keras.

Autoencoders are unsupervised neural networks that learn to efficiently compress and reconstruct data. This project demonstrates how an autoencoder can learn meaningful latent representations of images and then reconstruct them with minimal loss.


๐Ÿ” Project Highlights

  • Implementation of a Deep Autoencoder
  • Image normalization and preprocessing
  • Encoder โ†’ Bottleneck (latent space) โ†’ Decoder pipeline
  • Unsupervised learning (no labels required)
  • Visualization of:
    • Original images
    • Reconstructed images
    • Reconstruction loss
  • Demonstrates dimensionality reduction and feature learning

โš™๏ธ Workflow

The notebook follows these main steps:

  1. Load and preprocess image dataset
  2. Normalize images to [0, 1]
  3. Build encoder network:
    • Dense / Conv layers
    • Bottleneck (latent vector)
  4. Build decoder network:
    • Reverse of encoder
    • Reconstruct image from latent vector
  5. Compile autoencoder using MSE / Binary Crossentropy loss
  6. Train the model on input images
  7. Visualize reconstruction results
  8. Evaluate reconstruction error

โš ๏ธ The dataset is NOT included in the repository due to size limitations. Please download and place it inside the data/ folder.


๐Ÿ› ๏ธ Technologies Used

1.Python
2.TensorFlow / Keras
3.NumPy
4.Matplotlib
5.OpenCV / PIL
6.Scikit-learn
7.Jupyter Notebook


๐Ÿ“ˆ Applications of This Model

1.Image denoising
2.Compression
3.Anomaly detection
4.Dimensionality reduction
5.Feature extraction


๐Ÿ”ฎ Future Improvements

1.Add Convolutional Autoencoder (CAE)
2.Implement Denoising Autoencoder
3.Add Variational Autoencoder (VAE)
4.Use for anomaly detection
5.Add latent space visualization (t-SNE / PCA)


๐Ÿ‘จโ€๐Ÿ’ป Author

Siddhi Hon
Deep Learning | AI Enthusiast

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published