Skip to content

SolvingLab/SLTCGA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SLTCGA

Multi-Omics Analysis Toolkit for TCGA Cancer Database

R License: GPL v3 Version


Abstract

SLTCGA is a comprehensive R package designed for systematic analysis of multi-omics data from The Cancer Genome Atlas (TCGA). The package implements 17 analytical scenarios covering correlation analysis, pathway enrichment, and survival analysis across 8 omics layers including transcriptomics, genomics, epigenomics, microRNA, clinical data, molecular signatures, and immune cell infiltration. Supports 33 main cancer types plus 32 molecular subtypes.

Key Capabilities

  • 17 Analytical Scenarios: Comprehensive coverage of all variable type combinations
  • 8 Omics Layers: RNAseq, Mutation, CNV, Methylation, miRNA, Clinical, ImmuneCell, Signature
  • 33 Cancer Types: BRCA, LUAD, COAD, KIRC, HNSC, LIHC, GBM, SKCM, PRAD, THCA, and more
  • 32 Molecular Subtypes: BRCA_IDC, BRCA_ILC, BRCA_TNBC, COAD_LCC, LUAD_LUSC, etc.
  • Automated Workflows: From data loading to publication-ready visualizations

Installation

Prerequisites

# Install Bioconductor packages
if (!require("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install(c("fgsea", "ComplexHeatmap"))

Install SLTCGA

# Install from GitHub
devtools::install_github("SolvingLab/SLTCGA")

# Install dependencies from SolvingLab
devtools::install_github("Zaoqu-Liu/ggforge")
devtools::install_github("SolvingLab/BioEnricher")
devtools::install_github("Zaoqu-Liu/genekitr2")
devtools::install_github("SolvingLab/astat")

Setup

library(SLTCGA)

# Set path to TCGA bulk data
Sys.setenv(SL_BULK_DATA = "/path/to/bulk_data")

Analytical Framework

Overview of 17 Scenarios

Scenario Variable Types Analysis Visualization
1 1 continuous vs 1 continuous Pearson/Spearman correlation CorPlot, ScatterPlot
2 1 vs multiple continuous Correlation LollipopPlot, DotPlot
3 Multiple vs multiple continuous Correlation matrix DotPlot, Heatmap
4 1 categorical vs 1 continuous Wilcoxon/Kruskal-Wallis BoxPlot
5-6 Multiple BoxPlots Group comparison Multiple BoxPlots
7 Categorical vs categorical Chi-square/Fisher's exact BarPlot, Heatmap
8-9 1 categorical vs genome/pathways DEA → GSEA NetworkPlot, DotPlot
10-11 Multiple categorical vs genome/pathways Multi-DEA → GSEA DotPlot Paired, Matrix
12-13 1 continuous vs genome/pathways Correlation → GSEA NetworkPlot, DotPlot
14-15 Multiple continuous vs genome/pathways Multi-correlation → GSEA DotPlot Paired, Matrix
16 1 variable vs survival Kaplan-Meier + Cox KM + Cox curves
17 Multiple variables vs survival Cox regression Forest plot

Core Functions

1. Data Loading: tcga_load_modality()

Load and merge multi-omics data with automatic preprocessing.

# Load single gene across multiple cancers
data <- tcga_load_modality(
  var1 = "TP53",
  var1_modal = "RNAseq",
  var1_cancers = c("BRCA", "LUAD", "COAD")
)
# Returns: 3 features (TP53 in each cancer)

2. Correlation Analysis: tcga_correlation()

Comprehensive correlation and association analysis (Scenarios 1-7).

3. Enrichment Analysis: tcga_enrichment()

Genome-wide scans and pathway enrichment (Scenarios 8-15).

4. Survival Analysis: tcga_survival()

Kaplan-Meier curves and Cox regression (Scenarios 16-17).


Methodological Highlights

Correlation Analysis (Scenarios 1-7)

Scenario 1: Gene Expression Correlation

Example 1: Single gene mRNA correlation across cancer

result <- tcga_correlation(
  var1 = "TP53", var1_modal = "RNAseq", var1_cancers = "BRCA",
  var2 = "MDM2", var2_modal = "RNAseq", var2_cancers = "BRCA",
  method = "pearson"
)

Figure 1. TP53-MDM2 mRNA expression correlation in breast cancer (r=0.42, p<0.001)

Example 2: Multi-cancer gene expression correlation

result <- tcga_correlation(
  var1 = "TP53", var1_modal = "RNAseq",
  var1_cancers = c("BRCA", "LUAD", "COAD"),
  var2 = "MYC", var2_modal = "RNAseq",
  var2_cancers = c("BRCA", "LUAD", "COAD")
)

Figure 2. TP53-MYC correlation across three major cancer types

Example 3: Gene expression and methylation

result <- tcga_correlation(
  var1 = "TP53", var1_modal = "RNAseq", var1_cancers = "BRCA",
  var2 = "TP53", var2_modal = "Methylation", var2_cancers = "BRCA"
)

Figure 3. TP53 promoter methylation inversely correlates with mRNA expression

Example 4: ESR1 methylation-expression coupling

result <- tcga_correlation(
  var1 = "ESR1", var1_modal = "Methylation", var1_cancers = "BRCA",
  var2 = "ESR1", var2_modal = "RNAseq", var2_cancers = "BRCA"
)

Figure 4. ESR1 methylation silences estrogen receptor expression

Example 5: MLH1 methylation in colorectal cancer

result <- tcga_correlation(
  var1 = "MLH1", var1_modal = "Methylation", var1_cancers = "COAD",
  var2 = "MLH1", var2_modal = "RNAseq", var2_cancers = "COAD"
)

Figure 5. MLH1 promoter hypermethylation leads to microsatellite instability

Example 6: CDKN2A methylation in lung cancer

result <- tcga_correlation(
  var1 = "CDKN2A", var1_modal = "Methylation", var1_cancers = "LUAD",
  var2 = "CDKN2A", var2_modal = "RNAseq", var2_cancers = "LUAD"
)

Figure 6. CDKN2A methylation is a key tumor suppressor inactivation mechanism

Example 7: Gene expression and CNV

result <- tcga_correlation(
  var1 = "ERBB2", var1_modal = "CNV", var1_cancers = "BRCA",
  var2 = "ERBB2", var2_modal = "RNAseq", var2_cancers = "BRCA"
)

Figure 7. ERBB2 (HER2) amplification drives overexpression in breast cancer

Example 8: EGFR CNV-expression in lung cancer

result <- tcga_correlation(
  var1 = "EGFR", var1_modal = "CNV", var1_cancers = "LUAD",
  var2 = "EGFR", var2_modal = "RNAseq", var2_cancers = "LUAD"
)

Figure 8. EGFR copy number variation correlates with mRNA levels

Example 9: MYC amplification

result <- tcga_correlation(
  var1 = "MYC", var1_modal = "CNV", var1_cancers = "BRCA",
  var2 = "MYC", var2_modal = "RNAseq", var2_cancers = "BRCA"
)

Figure 9. MYC amplification leads to oncogenic overexpression

Example 10: CCND1 CNV in head and neck cancer

result <- tcga_correlation(
  var1 = "CCND1", var1_modal = "CNV", var1_cancers = "HNSC",
  var2 = "CCND1", var2_modal = "RNAseq", var2_cancers = "HNSC"
)

Figure 10. CCND1 amplification at 11q13 locus in HNSC

Scenario 2: MicroRNA-Gene Regulation

Example 11: let-7a targets MYC

result <- tcga_correlation(
  var1 = "hsa-let-7a-1", var1_modal = "miRNA", var1_cancers = "BRCA",
  var2 = "MYC", var2_modal = "RNAseq", var2_cancers = "BRCA"
)

Figure 11. let-7a inversely regulates MYC oncogene expression

Example 12: miR-200c and CDH1 in EMT

result <- tcga_correlation(
  var1 = "hsa-mir-200c", var1_modal = "miRNA", var1_cancers = "BRCA",
  var2 = "CDH1", var2_modal = "RNAseq", var2_cancers = "BRCA"
)

Figure 12. miR-200c regulates E-cadherin in epithelial-mesenchymal transition

Example 13: miR-21 and inflammation

result <- tcga_correlation(
  var1 = "hsa-mir-21", var1_modal = "miRNA", var1_cancers = "BRCA",
  var2 = c("Macrophages_M1", "Macrophages_M2"), var2_modal = "ImmuneCell", var2_cancers = "BRCA"
)

Figure 13. miR-21 correlates with tumor-associated macrophage infiltration

Example 14: let-7a correlation with multiple miRNAs

result <- tcga_correlation(
  var1 = "hsa-let-7a-1", var1_modal = "miRNA", var1_cancers = "BRCA",
  var2 = "hsa-mir-21", var2_modal = "miRNA", var2_cancers = "BRCA"
)

Figure 14. Co-regulation patterns between oncogenic miRNAs

Example 15: miRNA and gene expression networks

result <- tcga_correlation(
  var1 = c("hsa-let-7a-1", "hsa-mir-21", "hsa-mir-200c"), var1_modal = "miRNA",
  var1_cancers = "BRCA",
  var2 = c("MYC", "KRAS", "CDH1"), var2_modal = "RNAseq",
  var2_cancers = "BRCA"
)

Figure 15. Systematic miRNA-mRNA regulatory network analysis

Scenario 3: Gene-Signature Correlation

Example 16: TMB correlation with gene expression

result <- tcga_correlation(
  var1 = "TP53", var1_modal = "RNAseq", var1_cancers = "BRCA",
  var2 = "TMB", var2_modal = "Signature", var2_cancers = "BRCA"
)

Figure 16. TP53 expression correlates with tumor mutational burden

Example 17: ESR1 and tumor purity

result <- tcga_correlation(
  var1 = "ESR1", var1_modal = "RNAseq", var1_cancers = "BRCA",
  var2 = "Purity", var2_modal = "Signature", var2_cancers = "BRCA"
)

Figure 17. ESR1-positive tumors show higher tumor purity

Example 18: VHL and hypoxia signature

result <- tcga_correlation(
  var1 = "VHL", var1_modal = "RNAseq", var1_cancers = "KIRC",
  var2 = "Hypoxia", var2_modal = "Signature", var2_cancers = "KIRC"
)

Figure 18. VHL loss activates hypoxia signaling in kidney cancer

Example 19: IFNG and IFN-gamma signature

result <- tcga_correlation(
  var1 = "IFNG", var1_modal = "RNAseq", var1_cancers = "HNSC",
  var2 = "IFN_Gamma", var2_modal = "Signature", var2_cancers = "HNSC"
)

Figure 19. IFNG expression drives interferon-gamma response signature

Example 20: TGFB1 and TGF-beta pathway

result <- tcga_correlation(
  var1 = "TGFB1", var1_modal = "RNAseq", var1_cancers = "LIHC",
  var2 = "TGF_Beta", var2_modal = "Signature", var2_cancers = "LIHC"
)

Figure 20. TGFB1 expression activates TGF-beta signaling in liver cancer

Example 21: Multiple genes vs multiple signatures

result <- tcga_correlation(
  var1 = c("hsa-let-7a-1", "hsa-mir-21"), var1_modal = "miRNA",
  var1_cancers = "BRCA",
  var2 = c("TMB", "Purity", "TIL_Score"), var2_modal = "Signature",
  var2_cancers = "BRCA"
)

Figure 21. miRNA correlations with tumor microenvironment signatures

Example 22: Signature-signature correlation

result <- tcga_correlation(
  var1 = "TMB", var1_modal = "Signature", var1_cancers = "BRCA",
  var2 = "Purity", var2_modal = "Signature", var2_cancers = "BRCA"
)

Figure 22. High TMB tumors show lower purity (more immune infiltration)

Example 23: Multiple signature correlation matrix

result <- tcga_correlation(
  var1 = c("TMB", "Purity"), var1_modal = "Signature", var1_cancers = "BRCA",
  var2 = c("TIL_Score", "Leukocyte"), var2_modal = "Signature", var2_cancers = "BRCA"
)

Figure 23. Tumor microenvironment signature correlation matrix

Example 24: Multiple signatures vs gene expression

result <- tcga_correlation(
  var1 = c("Leukocyte", "Stromal", "TIL_Score"), var1_modal = "Signature",
  var1_cancers = "BRCA",
  var2 = "CD274", var2_modal = "RNAseq", var2_cancers = "BRCA"
)

Figure 24. Immune signatures correlate with PD-L1 expression

Scenario 4: Mutation-Expression Association

Example 25: TP53 mutation and expression

result <- tcga_correlation(
  var1 = "TP53", var1_modal = "Mutation", var1_cancers = "BRCA",
  var2 = "TP53", var2_modal = "RNAseq", var2_cancers = "BRCA"
)

Figure 25. TP53 mutation status and mRNA expression levels (p=0.03)

Example 26: PIK3CA mutation and AKT1 expression

result <- tcga_correlation(
  var1 = "PIK3CA", var1_modal = "Mutation", var1_cancers = "BRCA",
  var2 = "AKT1", var2_modal = "RNAseq", var2_cancers = "BRCA"
)

Figure 26. PIK3CA mutation activates AKT pathway

Example 27: KRAS mutation and EGFR expression

result <- tcga_correlation(
  var1 = "KRAS", var1_modal = "Mutation", var1_cancers = "LUAD",
  var2 = "EGFR", var2_modal = "RNAseq", var2_cancers = "LUAD"
)

Figure 27. KRAS mutation correlates with reduced EGFR expression

Example 28: PIK3CA mutation and ESR1 expression

result <- tcga_correlation(
  var1 = "ESR1", var1_modal = "RNAseq", var1_cancers = "BRCA",
  var2 = "PIK3CA", var2_modal = "Mutation", var2_cancers = "BRCA"
)

Figure 28. PIK3CA mutations are enriched in ER-positive breast cancers

Example 29: Mutation and methylation

result <- tcga_correlation(
  var1 = "TP53", var1_modal = "Methylation", var1_cancers = "BRCA",
  var2 = "TP53", var2_modal = "Mutation", var2_cancers = "BRCA"
)

Figure 29. TP53 methylation and mutation are mutually exclusive

Example 30: MLH1 methylation and mutation

result <- tcga_correlation(
  var1 = "MLH1", var1_modal = "Methylation", var1_cancers = "COAD",
  var2 = "MLH1", var2_modal = "Mutation", var2_cancers = "COAD"
)

Figure 30. MLH1 inactivation through methylation or mutation

Example 31: miRNA and mutation

result <- tcga_correlation(
  var1 = "hsa-mir-200c", var1_modal = "miRNA", var1_cancers = "BRCA",
  var2 = "CDH1", var2_modal = "Mutation", var2_cancers = "BRCA"
)

Figure 31. miR-200c regulation is independent of CDH1 mutation status

Example 32: miR-21 and TP53 mutation

result <- tcga_correlation(
  var1 = "hsa-mir-21", var1_modal = "miRNA", var1_cancers = "BRCA",
  var2 = "TP53", var2_modal = "Mutation", var2_cancers = "BRCA"
)

Figure 32. miR-21 expression is elevated in TP53-mutant tumors

Scenario 5: Mutation-Signature Association

Example 33: TP53 mutation and TMB

result <- tcga_correlation(
  var1 = "TP53", var1_modal = "Mutation", var1_cancers = "BRCA",
  var2 = "TMB", var2_modal = "Signature", var2_cancers = "BRCA"
)

Figure 33. TP53-mutant tumors show elevated tumor mutational burden

Example 34: KRAS mutation and MSI in colorectal cancer

result <- tcga_correlation(
  var1 = "KRAS", var1_modal = "Mutation", var1_cancers = "COAD",
  var2 = "MSI", var2_modal = "Signature", var2_cancers = "COAD"
)

Figure 34. KRAS mutations are exclusive with microsatellite instability

Example 35: MLH1 mutation and MSI

result <- tcga_correlation(
  var1 = "MLH1", var1_modal = "Mutation", var1_cancers = "COAD",
  var2 = "MSI", var2_modal = "Signature", var2_cancers = "COAD"
)

Figure 35. MLH1 mutations lead to microsatellite instability

Example 36: MLH1 methylation and MSI

result <- tcga_correlation(
  var1 = "MLH1", var1_modal = "Methylation", var1_cancers = "COAD",
  var2 = "MSI", var2_modal = "Signature", var2_cancers = "COAD"
)

Figure 36. MLH1 promoter methylation causes MSI-high phenotype

Example 37: IDH1 mutation and stemness

result <- tcga_correlation(
  var1 = "IDH1", var1_modal = "Mutation", var1_cancers = "GLIOMA",
  var2 = "Stemness", var2_modal = "Signature", var2_cancers = "GLIOMA"
)

Figure 37. IDH1-mutant gliomas show higher stemness signature

Example 38: VHL mutation and HRD signature

result <- tcga_correlation(
  var1 = "VHL", var1_modal = "Mutation", var1_cancers = "KRCC",
  var2 = "HRD", var2_modal = "Signature", var2_cancers = "KRCC"
)

Figure 38. VHL mutation correlates with homologous recombination deficiency

Example 39: ERBB2 CNV and TMB

result <- tcga_correlation(
  var1 = "ERBB2", var1_modal = "CNV", var1_cancers = "BRCA",
  var2 = "TMB", var2_modal = "Signature", var2_cancers = "BRCA"
)

Figure 39. ERBB2 amplification correlates with chromosomal instability

Example 40: MYC CNV and purity

result <- tcga_correlation(
  var1 = "MYC", var1_modal = "CNV", var1_cancers = "BRCA",
  var2 = "Purity", var2_modal = "Signature", var2_cancers = "BRCA"
)

Figure 40. MYC amplification in high-purity aggressive tumors

Scenario 6: Immune Cell Infiltration Analysis

Example 41: PD-L1 expression and CD8+ T cells

result <- tcga_correlation(
  var1 = "CD274", var1_modal = "RNAseq", var1_cancers = "LUAD",
  var2 = "T_cells_CD8", var2_modal = "ImmuneCell", var2_cancers = "LUAD",
  immune_algorithm = "cibersort"
)

Figure 41. PD-L1 expression correlates with CD8+ T cell infiltration

Example 42: Immune checkpoints and T cells

result <- tcga_correlation(
  var1 = c("CD274", "PDCD1", "CTLA4"), var1_modal = "RNAseq", var1_cancers = "BRCA",
  var2 = c("T_cells_CD8", "T_cells_CD4_memory_resting", "Macrophages_M1"), 
  var2_modal = "ImmuneCell", var2_cancers = "BRCA"
)

Figure 42. Systematic immune checkpoint-immune cell infiltration analysis

Example 43: IL6 and M1 macrophages

result <- tcga_correlation(
  var1 = "Macrophages_M1", var1_modal = "ImmuneCell", var1_cancers = "BRCA",
  var2 = "IL6", var2_modal = "RNAseq", var2_cancers = "BRCA"
)

Figure 43. M1 macrophage infiltration correlates with IL6 expression

Example 44: CTLA4 and stromal signature

result <- tcga_correlation(
  var1 = "CTLA4", var1_modal = "RNAseq", var1_cancers = "KIRC",
  var2 = "Stromal", var2_modal = "Signature", var2_cancers = "KIRC"
)

Figure 44. CTLA4 expression in stromal-rich kidney tumors

Example 45: PDCD1 and multiple immune cells

result <- tcga_correlation(
  var1 = c("T_cells_CD8", "T_cells_CD4_memory_resting", "Macrophages_M1"),
  var1_modal = "ImmuneCell", var1_cancers = "KIRC",
  var2 = "PDCD1", var2_modal = "RNAseq", var2_cancers = "KIRC"
)

Figure 45. PD-1 expression across immune cell types in kidney cancer

Example 46: CD274 and TIL score

result <- tcga_correlation(
  var1 = "CD274", var1_modal = "RNAseq", var1_cancers = "LUAD",
  var2 = "TIL_Score", var2_modal = "Signature", var2_cancers = "LUAD"
)

Figure 46. PD-L1 expression reflects tumor-infiltrating lymphocyte density

Example 47: All immune cells pan-cancer analysis

result <- tcga_correlation(
  var1 = "CD274", var1_modal = "RNAseq", var1_cancers = "LUAD",
  var2 = "ALL_IMMUNE_CELLS", var2_modal = "ImmuneCell", var2_cancers = "LUAD"
)

Figure 47. Comprehensive immune cell infiltration landscape correlates with PD-L1

Example 48: M1 vs M2 macrophages

result <- tcga_correlation(
  var1 = c("T_cells_CD8", "T_cells_CD4_memory_resting"), var1_modal = "ImmuneCell",
  var1_cancers = "BRCA",
  var2 = c("Macrophages_M1", "Macrophages_M2"), var2_modal = "ImmuneCell",
  var2_cancers = "BRCA"
)

Figure 48. T cell and macrophage infiltration patterns in breast cancer

Example 49: PIK3CA mutation and immune cells

result <- tcga_correlation(
  var1 = "PIK3CA", var1_modal = "Mutation", var1_cancers = "BRCA",
  var2 = c("T_cells_CD8", "T_cells_CD4_memory_resting"), var2_modal = "ImmuneCell",
  var2_cancers = "BRCA"
)

Figure 49. PIK3CA mutations associated with reduced T cell infiltration

Example 50: PIK3CA mutation and multiple immune cells

result <- tcga_correlation(
  var1 = "PIK3CA", var1_modal = "Mutation", var1_cancers = "BRCA",
  var2 = c("T_cells_CD8", "Macrophages_M1", "NK_cells_activated"),
  var2_modal = "ImmuneCell", var2_cancers = "BRCA"
)

Figure 50. PIK3CA mutation creates immunosuppressive microenvironment

Example 51: ERBB2 CNV and macrophages

result <- tcga_correlation(
  var1 = "ERBB2", var1_modal = "CNV", var1_cancers = "BRCA",
  var2 = c("Macrophages_M1", "Macrophages_M2"), var2_modal = "ImmuneCell",
  var2_cancers = "BRCA"
)

Figure 51. ERBB2 amplification alters macrophage polarization

Example 52: MYC CNV and T cells

result <- tcga_correlation(
  var1 = "MYC", var1_modal = "CNV", var1_cancers = "BRCA",
  var2 = c("T_cells_CD8", "T_cells_CD4_memory_resting"),
  var2_modal = "ImmuneCell", var2_cancers = "BRCA"
)

Figure 52. MYC amplification correlates with immune exclusion

Example 53: Immune cells and TIL score

result <- tcga_correlation(
  var1 = c("T_cells_CD8", "Macrophages_M1", "NK_cells_activated"),
  var1_modal = "ImmuneCell", var1_cancers = "BRCA",
  var2 = "TIL_Score", var2_modal = "Signature", var2_cancers = "BRCA"
)

Figure 53. Cytotoxic immune cells correlate with TIL score

Example 54: Tumor purity and immune cells

result <- tcga_correlation(
  var1 = "Purity", var1_modal = "Signature", var1_cancers = "BRCA",
  var2 = c("T_cells_CD8", "B_cells_naive", "NK_cells_activated"),
  var2_modal = "ImmuneCell", var2_cancers = "BRCA"
)

Figure 54. Tumor purity inversely correlates with immune infiltration

Example 55: CDKN2A methylation and macrophages

result <- tcga_correlation(
  var1 = "CDKN2A", var1_modal = "Methylation", var1_cancers = "LUAD",
  var2 = c("Macrophages_M1", "Macrophages_M2"), var2_modal = "ImmuneCell",
  var2_cancers = "LUAD"
)

Figure 55. CDKN2A silencing correlates with M2 macrophage polarization

Example 56: TP53 methylation and T cells

result <- tcga_correlation(
  var1 = "TP53", var1_modal = "Methylation", var1_cancers = "BRCA",
  var2 = c("T_cells_CD8", "T_cells_CD4_memory_resting"),
  var2_modal = "ImmuneCell", var2_cancers = "BRCA"
)

Figure 56. TP53 methylation associated with altered T cell infiltration

Scenario 7: Clinical Variable Analysis

Example 57: Age and TP53 expression

result <- tcga_correlation(
  var1 = "Age", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = "TP53", var2_modal = "RNAseq", var2_cancers = "BRCA"
)

Figure 57. TP53 expression correlates with patient age

Example 58: Tumor stage and gene expression

result <- tcga_correlation(
  var1 = "Stage", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = "MYC", var2_modal = "RNAseq", var2_cancers = "BRCA"
)

Figure 58. MYC expression increases with tumor stage (Kruskal-Wallis p<0.001)

Example 59: Stage and proliferation signature

result <- tcga_correlation(
  var1 = "Stage", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = "Proliferation", var2_modal = "Signature", var2_cancers = "BRCA"
)

Figure 59. Proliferation signature correlates with advanced stage

Example 60: Age and TMB

result <- tcga_correlation(
  var1 = "Age", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = "TMB", var2_modal = "Signature", var2_cancers = "BRCA"
)

Figure 60. Tumor mutational burden increases with patient age

Example 61: Age and TP53 mutation

result <- tcga_correlation(
  var1 = "Age", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = "TP53", var2_modal = "Mutation", var2_cancers = "BRCA"
)

Figure 61. TP53 mutation frequency across age groups

Example 62: Age and T cell infiltration

result <- tcga_correlation(
  var1 = "Age", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = "T_cells_CD8", var2_modal = "ImmuneCell", var2_cancers = "BRCA"
)

Figure 62. CD8+ T cell infiltration decreases with age

Example 63: Age and methylation

result <- tcga_correlation(
  var1 = "Age", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = "BRCA1", var2_modal = "Methylation", var2_cancers = "BRCA"
)

Figure 63. BRCA1 methylation accumulates with age

Example 64: Age and miRNA expression

result <- tcga_correlation(
  var1 = "Age", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = "hsa-let-7a-1", var2_modal = "miRNA", var2_cancers = "BRCA"
)

Figure 64. let-7a expression changes with patient age

Example 65: Gender and gene expression

result <- tcga_correlation(
  var1 = "Gender", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = "ESR1", var2_modal = "RNAseq", var2_cancers = "BRCA"
)

Figure 65. ESR1 expression differences between male and female breast cancer

Example 66: Gender and TIL score

result <- tcga_correlation(
  var1 = "Gender", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = "TIL_Score", var2_modal = "Signature", var2_cancers = "BRCA"
)

Figure 66. Gender differences in tumor immune infiltration

Example 67: Gender and miRNA

result <- tcga_correlation(
  var1 = "Gender", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = c("hsa-let-7a-1", "hsa-mir-21"), var2_modal = "miRNA",
  var2_cancers = "BRCA"
)

Figure 67. miRNA expression patterns differ by gender

Example 68: Gender and methylation

result <- tcga_correlation(
  var1 = "Gender", var1_modal = "Clinical", var1_cancers = "COAD",
  var2 = "MLH1", var2_modal = "Methylation", var2_cancers = "COAD"
)

Figure 68. MLH1 methylation shows gender-specific patterns in colon cancer

Example 69: ER status and ESR1 expression

result <- tcga_correlation(
  var1 = "ER", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = "ESR1", var2_modal = "RNAseq", var2_cancers = "BRCA"
)

Figure 69. Clinical ER status validated by ESR1 mRNA expression

Example 70: PR status and PGR expression

result <- tcga_correlation(
  var1 = "PR", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = "PGR", var2_modal = "RNAseq", var2_cancers = "BRCA"
)

Figure 70. PR status correlation with PGR mRNA levels

Example 71: HER2 status and ERBB2 expression

result <- tcga_correlation(
  var1 = "HER2", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = "ERBB2", var2_modal = "RNAseq", var2_cancers = "BRCA"
)

Figure 71. HER2 IHC status validated by ERBB2 mRNA

Example 72: ER status and immune cells

result <- tcga_correlation(
  var1 = "ER", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = "ALL_IMMUNE_CELLS", var2_modal = "ImmuneCell", var2_cancers = "BRCA"
)

Figure 72. ER-negative tumors show higher immune infiltration

Example 73: ER status and IFN-gamma signature

result <- tcga_correlation(
  var1 = "ER", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = "IFN_Gamma", var2_modal = "Signature", var2_cancers = "BRCA"
)

Figure 73. ER-negative tumors have elevated IFN-gamma response

Example 74: Clinical-clinical associations (chi-square)

result <- tcga_correlation(
  var1 = "ER", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = "PR", var2_modal = "Clinical", var2_cancers = "BRCA"
)

Figure 74. ER and PR status are highly concordant (Chi-square p<0.001)

Example 75: ER-HER2 clinical associations

result <- tcga_correlation(
  var1 = "ER", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = "HER2", var2_modal = "Clinical", var2_cancers = "BRCA"
)

Figure 75. ER and HER2 status define breast cancer subtypes

Example 76: Age and gender distribution

result <- tcga_correlation(
  var1 = "Age", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = "Gender", var2_modal = "Clinical", var2_cancers = "BRCA"
)

Figure 76. Age distribution by gender in breast cancer

Example 77: Gender distribution across cancer types

result <- tcga_correlation(
  var1 = "Gender", var1_modal = "Clinical", var1_cancers = "HNSC",
  var2 = "Race", var2_modal = "Clinical", var2_cancers = "HNSC"
)

Figure 77. Gender and racial distribution in head and neck cancer

Example 78: Vital status and tumor purity

result <- tcga_correlation(
  var1 = "VitalStatus", var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = "Purity", var2_modal = "Signature", var2_cancers = "BRCA"
)

Figure 78. Tumor purity correlates with patient outcome

Scenario 8: Multi-Variable Complex Analysis

Example 79: Multiple genes correlation matrix

result <- tcga_correlation(
  var1 = c("TP53", "ESR1", "ERBB2"), var1_modal = "RNAseq",
  var1_cancers = "BRCA",
  var2 = c("PGR", "AR", "GATA3"), var2_modal = "RNAseq",
  var2_cancers = "BRCA"
)

Figure 79. Breast cancer gene expression correlation matrix

Example 80: Multiple CNV correlation

result <- tcga_correlation(
  var1 = c("MYC", "ERBB2", "CCND1"), var1_modal = "CNV",
  var1_cancers = "BRCA",
  var2 = c("MYC", "ERBB2", "CCND1"), var2_modal = "RNAseq",
  var2_cancers = "BRCA"
)

Figure 80. Systematic CNV-expression correlation for oncogenes

Example 81: Multiple methylation-expression pairs

result <- tcga_correlation(
  var1 = c("TP53", "ESR1", "PGR"), var1_modal = "Methylation",
  var1_cancers = "BRCA",
  var2 = c("TP53", "ESR1", "PGR"), var2_modal = "RNAseq",
  var2_cancers = "BRCA"
)

Figure 81. Epigenetic regulation of key breast cancer genes

Example 82: Multiple clinical variables vs gene expression

result <- tcga_correlation(
  var1 = c("Age", "Gender", "Race"), var1_modal = "Clinical",
  var1_cancers = "BRCA",
  var2 = "TP53", var2_modal = "RNAseq", var2_cancers = "BRCA"
)

Figure 82. TP53 expression across demographic variables

Example 83: Multiple clinical vs multiple genes

result <- tcga_correlation(
  var1 = c("TP53", "ESR1"), var1_modal = "RNAseq", var1_cancers = "BRCA",
  var2 = c("Age", "Gender", "Race"), var2_modal = "Clinical", var2_cancers = "BRCA"
)

Figure 83. Gene expression patterns across clinical variables

Example 84: Four clinical variables vs gene

result <- tcga_correlation(
  var1 = c("Age", "Gender", "Race", "BMI"), var1_modal = "Clinical",
  var1_cancers = "BRCA",
  var2 = "TP53", var2_modal = "RNAseq", var2_cancers = "BRCA"
)

Figure 84. Comprehensive clinical association with TP53 expression

Example 85: ER-PR-HER2 trinity vs gene expression

result <- tcga_correlation(
  var1 = c("ER", "PR", "HER2"), var1_modal = "Clinical", var1_cancers = "BRCA",
  var2 = c("ESR1", "PGR", "ERBB2"), var2_modal = "RNAseq", var2_cancers = "BRCA"
)

Figure 85. Clinical IHC status vs mRNA expression for breast cancer biomarkers

Multi-Cancer Analysis

Example 86: Pan-cancer age-TP53 correlation

result <- tcga_correlation(
  var1 = "Age", var1_modal = "Clinical",
  var1_cancers = c("BRCA", "LUAD", "COAD"),
  var2 = "TP53", var2_modal = "RNAseq",
  var2_cancers = c("BRCA", "LUAD", "COAD")
)

Figure 86. Age-TP53 relationship across three major cancer types

Example 87: Pan-cancer gender-TIL correlation

result <- tcga_correlation(
  var1 = "Gender", var1_modal = "Clinical",
  var1_cancers = c("BRCA", "LUAD", "HNSC"),
  var2 = "TIL_Score", var2_modal = "Signature",
  var2_cancers = c("BRCA", "LUAD", "HNSC")
)

Figure 87. Gender differences in immune infiltration across cancers

Example 88: Pan-cancer stage-TMB correlation

result <- tcga_correlation(
  var1 = "Stage", var1_modal = "Clinical",
  var1_cancers = c("LUAD", "COAD", "KIRC"),
  var2 = "TMB", var2_modal = "Signature",
  var2_cancers = c("LUAD", "COAD", "KIRC")
)

Figure 88. TMB increases with stage in multiple cancer types

Molecular Subtype Analysis

Example 89: BRCA subtypes - ESR1 vs PGR

result <- tcga_correlation(
  var1 = "ESR1", var1_modal = "RNAseq",
  var1_cancers = c("BRCA_IDC", "BRCA_ILC", "BRCA_TNBC"),
  var2 = "PGR", var2_modal = "RNAseq",
  var2_cancers = c("BRCA_IDC", "BRCA_ILC", "BRCA_TNBC")
)

Figure 89. ESR1-PGR correlation across breast cancer molecular subtypes

Example 90: BRCA subtypes - ESR1 vs purity

result <- tcga_correlation(
  var1 = "ESR1", var1_modal = "RNAseq",
  var1_cancers = c("BRCA_IDC", "BRCA_ILC", "BRCA_TNBC"),
  var2 = "Purity", var2_modal = "Signature",
  var2_cancers = c("BRCA_IDC", "BRCA_ILC", "BRCA_TNBC")
)

Figure 90. Hormone receptor status and tumor purity across subtypes

Example 91: BRCA subtypes - PIK3CA mutation vs purity

result <- tcga_correlation(
  var1 = "PIK3CA", var1_modal = "Mutation",
  var1_cancers = c("BRCA_IDC", "BRCA_ILC", "BRCA_TNBC"),
  var2 = "Purity", var2_modal = "Signature",
  var2_cancers = c("BRCA_IDC", "BRCA_ILC", "BRCA_TNBC")
)

Figure 91. PIK3CA mutation frequency and tumor characteristics by subtype

Example 92: BRCA subtypes - stage vs immune cells

result <- tcga_correlation(
  var1 = "Stage", var1_modal = "Clinical",
  var1_cancers = c("BRCA_IDC", "BRCA_ILC", "BRCA_TNBC"),
  var2 = c("T_cells_CD8", "Macrophages_M1"), var2_modal = "ImmuneCell",
  var2_cancers = c("BRCA_IDC", "BRCA_ILC", "BRCA_TNBC")
)

Figure 92. Immune infiltration across stages in breast cancer subtypes

Example 93: BRCA subtypes - TP53 mutation vs TMB

result <- tcga_correlation(
  var1 = "TP53", var1_modal = "Mutation",
  var1_cancers = c("BRCA_IDC", "BRCA_ILC", "BRCA_TNBC"),
  var2 = "TMB", var2_modal = "Signature",
  var2_cancers = c("BRCA_IDC", "BRCA_ILC", "BRCA_TNBC")
)

Figure 93. TP53 mutation drives TMB across breast cancer subtypes

Example 94: BRCA subtypes - TP53 mutation vs immune cells

result <- tcga_correlation(
  var1 = "TP53", var1_modal = "Mutation",
  var1_cancers = c("BRCA_IDC", "BRCA_ILC", "BRCA_TNBC"),
  var2 = "ALL_IMMUNE_CELLS", var2_modal = "ImmuneCell",
  var2_cancers = c("BRCA_IDC", "BRCA_ILC", "BRCA_TNBC")
)

Figure 94. Comprehensive immune landscape in TP53-mutant tumors by subtype

Example 95: BRCA subtypes - TMB vs purity

result <- tcga_correlation(
  var1 = "TMB", var1_modal = "Signature",
  var1_cancers = c("BRCA_IDC", "BRCA_ILC", "BRCA_TNBC"),
  var2 = "Purity", var2_modal = "Signature",
  var2_cancers = c("BRCA_IDC", "BRCA_ILC", "BRCA_TNBC")
)

Figure 95. TMB-purity relationship varies across breast cancer subtypes

Example 96: BRCA subtypes - ERBB2 CNV vs TIL score

result <- tcga_correlation(
  var1 = "ERBB2", var1_modal = "CNV",
  var1_cancers = c("BRCA_IDC", "BRCA_ILC", "BRCA_TNBC"),
  var2 = "TIL_Score", var2_modal = "Signature",
  var2_cancers = c("BRCA_IDC", "BRCA_ILC", "BRCA_TNBC")
)

Figure 96. ERBB2 amplification correlates with immune infiltration

Example 97: IDC subtype-specific analysis

result <- tcga_correlation(
  var1 = "TP53", var1_modal = "RNAseq", var1_cancers = "BRCA_IDC",
  var2 = "TMB", var2_modal = "Signature", var2_cancers = "BRCA_IDC"
)

Figure 97. TP53 expression-TMB correlation in invasive ductal carcinoma

Example 98: TNBC subtype-specific analysis

result <- tcga_correlation(
  var1 = "TP53", var1_modal = "RNAseq", var1_cancers = "BRCA_TNBC",
  var2 = "TMB", var2_modal = "Signature", var2_cancers = "BRCA_TNBC"
)

Figure 98. TP53-TMB relationship in triple-negative breast cancer

Example 99: ILC subtype-specific analysis

result <- tcga_correlation(
  var1 = "TP53", var1_modal = "RNAseq", var1_cancers = "BRCA_ILC",
  var2 = "TMB", var2_modal = "Signature", var2_cancers = "BRCA_ILC"
)

Figure 99. TP53-TMB dynamics in invasive lobular carcinoma

Example 100: COAD subtypes - stage vs TIL score

result <- tcga_correlation(
  var1 = "Stage", var1_modal = "Clinical",
  var1_cancers = c("COAD_LCC", "COAD_MAC"),
  var2 = "TIL_Score", var2_modal = "Signature",
  var2_cancers = c("COAD_LCC", "COAD_MAC")
)

Figure 100. Stage-immune infiltration across colon cancer anatomical subtypes

Example 101: COAD subtypes - KRAS mutation vs MSI

result <- tcga_correlation(
  var1 = "KRAS", var1_modal = "Mutation",
  var1_cancers = c("COAD_LCC", "COAD_RCC", "COAD_MAC"),
  var2 = "MSI", var2_modal = "Signature",
  var2_cancers = c("COAD_LCC", "COAD_RCC", "COAD_MAC")
)

Figure 101. KRAS mutation and MSI status across colon cancer locations

Example 102: COAD subtypes - APC mutation vs stemness

result <- tcga_correlation(
  var1 = "APC", var1_modal = "Mutation",
  var1_cancers = c("COAD_LCC", "COAD_RCC"),
  var2 = "Stemness", var2_modal = "Signature",
  var2_cancers = c("COAD_LCC", "COAD_RCC")
)

Figure 102. APC mutation correlates with cancer stemness by tumor location

Example 103: COAD subtypes - TIL score vs stemness

result <- tcga_correlation(
  var1 = "TIL_Score", var1_modal = "Signature",
  var1_cancers = c("COAD_LCC", "COAD_RCC"),
  var2 = "Stemness", var2_modal = "Signature",
  var2_cancers = c("COAD_LCC", "COAD_RCC")
)

Figure 103. Inverse correlation between immune infiltration and stemness

Example 104: ESCA subtypes - TP53 mutation vs TMB

result <- tcga_correlation(
  var1 = "TP53", var1_modal = "Mutation",
  var1_cancers = c("ESCA_ESCC", "ESCA_EAC"),
  var2 = "TMB", var2_modal = "Signature",
  var2_cancers = c("ESCA_ESCC", "ESCA_EAC")
)

Figure 104. TP53 mutation and TMB in esophageal cancer histological subtypes

Example 105: ESCA subtypes - CDKN2A vs purity

result <- tcga_correlation(
  var1 = "CDKN2A", var1_modal = "RNAseq",
  var1_cancers = c("ESCA_ESCC", "ESCA_EAC"),
  var2 = "Purity", var2_modal = "Signature",
  var2_cancers = c("ESCA_ESCC", "ESCA_EAC")
)

Figure 105. CDKN2A expression patterns across esophageal cancer subtypes

Example 106: LGG subtypes - IDH1 mutation vs stemness

result <- tcga_correlation(
  var1 = "IDH1", var1_modal = "Mutation",
  var1_cancers = c("LGG_ASTROCYTOMA", "LGG_OLIGODENDROGLIOMA"),
  var2 = "Stemness", var2_modal = "Signature",
  var2_cancers = c("LGG_ASTROCYTOMA", "LGG_OLIGODENDROGLIOMA")
)

Figure 106. IDH1 mutation and stemness across glioma histological types

Example 107: LGG subtypes - TP53 vs TIL score

result <- tcga_correlation(
  var1 = "TP53", var1_modal = "RNAseq",
  var1_cancers = c("LGG_ASTROCYTOMA", "LGG_OLIGOASTROCYTOMA"),
  var2 = "TIL_Score", var2_modal = "Signature",
  var2_cancers = c("LGG_ASTROCYTOMA", "LGG_OLIGOASTROCYTOMA")
)

Figure 107. TP53 expression and immune infiltration in glioma subtypes


Enrichment Analysis (Scenarios 8-15)

Scenario 8-9: Mutation-Driven Pathway Analysis

Example 108: TP53 mutation genome-wide scan

result <- tcga_enrichment(
  var1 = "TP53",
  var1_modal = "Mutation",
  var1_cancers = "BRCA",
  analysis_type = "genome",
  genome_modal = "RNAseq",
  top_n = 50
)

Figure 108. Network visualization of top 50 up/down-regulated genes in TP53-mutant tumors

Example 109: TP53 mutation pathway enrichment

result <- tcga_enrichment(
  var1 = "TP53",
  var1_modal = "Mutation",
  var1_cancers = "BRCA",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  top_n = 20
)

Figure 109. Hallmark pathway enrichment in TP53-mutant breast cancer

Example 110: KRAS mutation genome scan in lung cancer

result <- tcga_enrichment(
  var1 = "KRAS",
  var1_modal = "Mutation",
  var1_cancers = "LUAD",
  analysis_type = "genome",
  genome_modal = "RNAseq",
  top_n = 50
)

Figure 110. KRAS mutation-driven transcriptomic changes in lung adenocarcinoma

Example 111: KRAS mutation pathway enrichment

result <- tcga_enrichment(
  var1 = "KRAS",
  var1_modal = "Mutation",
  var1_cancers = "LUAD",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  top_n = 20
)

Figure 111. MAPK and metabolic pathway activation in KRAS-mutant lung cancer

Example 112: EGFR mutation pathway analysis

result <- tcga_enrichment(
  var1 = "EGFR",
  var1_modal = "Mutation",
  var1_cancers = "LUAD",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  top_n = 20
)

Figure 112. EGFR mutation activates distinct pathways from KRAS

Example 113: PIK3CA mutation pathway enrichment

result <- tcga_enrichment(
  var1 = "PIK3CA",
  var1_modal = "Mutation",
  var1_cancers = "UCEC",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  top_n = 20
)

Figure 113. PI3K-AKT pathway activation in PIK3CA-mutant endometrial cancer

Example 114: BRAF mutation enrichment in melanoma

result <- tcga_enrichment(
  var1 = "BRAF",
  var1_modal = "Mutation",
  var1_cancers = "SKCM",
  analysis_type = "genome",
  genome_modal = "RNAseq",
  top_n = 50
)

Figure 114. BRAF V600E mutation transcriptomic signature in melanoma

Example 115: BRAF mutation pathway analysis

result <- tcga_enrichment(
  var1 = "BRAF",
  var1_modal = "Mutation",
  var1_cancers = "SKCM",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  top_n = 20
)

Figure 115. MAPK pathway hyperactivation in BRAF-mutant melanoma

Example 116: VHL mutation pathway analysis

result <- tcga_enrichment(
  var1 = "VHL",
  var1_modal = "Mutation",
  var1_cancers = "KIRC",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  top_n = 20
)

Figure 116. Hypoxia and angiogenesis pathways in VHL-mutant kidney cancer

Example 117: IDH1 mutation pathway analysis

result <- tcga_enrichment(
  var1 = "IDH1",
  var1_modal = "Mutation",
  var1_cancers = "GBM",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  top_n = 20
)

Figure 117. Metabolic reprogramming in IDH1-mutant glioblastoma

Example 118: CTNNB1 mutation pathway analysis

result <- tcga_enrichment(
  var1 = "CTNNB1",
  var1_modal = "Mutation",
  var1_cancers = "LIHC",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  top_n = 20
)

Figure 118. WNT pathway activation in CTNNB1-mutant liver cancer

Example 119: APC mutation pathway analysis

result <- tcga_enrichment(
  var1 = "APC",
  var1_modal = "Mutation",
  var1_cancers = "COAD",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  top_n = 20
)

Figure 119. WNT signaling dysregulation in APC-mutant colorectal cancer

Scenario 10-11: Multi-Mutation Comparative Analysis

Example 120: KRAS-EGFR comparative genome scan

result <- tcga_enrichment(
  var1 = c("KRAS", "EGFR"),
  var1_modal = "Mutation",
  var1_cancers = "LUAD",
  analysis_type = "genome",
  genome_modal = "RNAseq",
  top_n = 50
)

Figure 120. Comparative transcriptomic impact of KRAS, EGFR, and TP53 mutations

Example 121: KRAS-EGFR pathway comparison

result <- tcga_enrichment(
  var1 = c("KRAS", "EGFR"),
  var1_modal = "Mutation",
  var1_cancers = "LUAD",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  top_n = 15
)

Figure 121. Differential pathway activation in KRAS vs EGFR-mutant tumors

Example 122: KRAS-TP53 pathway comparison

result <- tcga_enrichment(
  var1 = c("KRAS", "TP53"),
  var1_modal = "Mutation",
  var1_cancers = "LUAD",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  top_n = 15
)

Figure 122. Synergistic pathway dysregulation in KRAS-TP53 co-mutant tumors

Example 123: TP53-ESR1 pathway comparison in breast cancer

result <- tcga_enrichment(
  var1 = c("TP53", "ESR1"),
  var1_modal = "RNAseq",
  var1_cancers = "BRCA",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  method = "pearson",
  top_n = 15
)

Figure 123. TP53 vs ESR1-associated pathway activities

Example 124: Three-gene pathway comparison

result <- tcga_enrichment(
  var1 = c("TP53", "ESR1", "ERBB2"),
  var1_modal = "RNAseq",
  var1_cancers = "BRCA",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  method = "pearson",
  top_n = 15
)

Figure 124. Comprehensive pathway matrix for breast cancer biomarkers

Example 125: Pan-cancer TP53 mutation comparison

result <- tcga_enrichment(
  var1 = "TP53",
  var1_modal = "Mutation",
  var1_cancers = c("BRCA", "LUAD", "COAD"),
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  top_n = 15
)

Figure 125. TP53 mutation drives similar pathways across different cancers

Example 126: Pan-cancer KRAS mutation comparison

result <- tcga_enrichment(
  var1 = "KRAS",
  var1_modal = "Mutation",
  var1_cancers = c("LUAD", "COAD", "PAAD"),
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  top_n = 15
)

Figure 126. KRAS mutation pathway effects across GI and lung cancers

Example 127: COAD subtype KRAS comparison

result <- tcga_enrichment(
  var1 = "KRAS",
  var1_modal = "Mutation",
  var1_cancers = c("COAD_LCC", "COAD_RCC"),
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  top_n = 15
)

Figure 127. KRAS mutation pathway effects differ by colon tumor location

Example 128: BRCA subtype TP53 comparison

result <- tcga_enrichment(
  var1 = "TP53",
  var1_modal = "Mutation",
  var1_cancers = c("BRCA_IDC", "BRCA_TNBC"),
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  top_n = 15
)

Figure 128. TP53 mutation pathway impact varies between breast cancer subtypes

Scenario 12-13: Gene Expression-Driven Pathway Analysis

Example 129: TP53 expression genome scan

result <- tcga_enrichment(
  var1 = "TP53",
  var1_modal = "RNAseq",
  var1_cancers = "BRCA",
  analysis_type = "genome",
  genome_modal = "RNAseq",
  method = "pearson",
  top_n = 50
)

Figure 129. Genes co-expressed with TP53 in breast cancer

Example 130: TP53 expression pathway enrichment

result <- tcga_enrichment(
  var1 = "TP53",
  var1_modal = "RNAseq",
  var1_cancers = "BRCA",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  method = "pearson",
  top_n = 20
)

Figure 130. Pathways correlated with TP53 expression levels

Example 131: KRAS expression genome scan

result <- tcga_enrichment(
  var1 = "KRAS",
  var1_modal = "RNAseq",
  var1_cancers = "LUAD",
  analysis_type = "genome",
  genome_modal = "RNAseq",
  method = "spearman",
  top_n = 50
)

Figure 131. KRAS co-expression network in lung adenocarcinoma

Example 132: KRAS expression pathway enrichment

result <- tcga_enrichment(
  var1 = "KRAS",
  var1_modal = "RNAseq",
  var1_cancers = "LUAD",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  method = "spearman",
  top_n = 20
)

Figure 132. KRAS expression-correlated pathway activities

Example 133: EGFR expression genome scan

result <- tcga_enrichment(
  var1 = "EGFR",
  var1_modal = "RNAseq",
  var1_cancers = "LUAD",
  analysis_type = "genome",
  genome_modal = "RNAseq",
  method = "pearson",
  top_n = 50
)

Figure 133. EGFR co-expression network reveals pathway dependencies

Example 134: EGFR expression pathway enrichment

result <- tcga_enrichment(
  var1 = "EGFR",
  var1_modal = "RNAseq",
  var1_cancers = "LUAD",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  method = "pearson",
  top_n = 20
)

Figure 134. EGFR-associated pathway activation patterns

Example 135: VHL expression pathway analysis

result <- tcga_enrichment(
  var1 = "VHL",
  var1_modal = "RNAseq",
  var1_cancers = "KIRC",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  method = "spearman",
  top_n = 20
)

Figure 135. VHL expression inversely correlates with hypoxia pathways

Example 136: MYC expression pathway analysis

result <- tcga_enrichment(
  var1 = "MYC",
  var1_modal = "RNAseq",
  var1_cancers = "HNSC",
  analysis_type = "genome",
  genome_modal = "RNAseq",
  method = "pearson",
  top_n = 50
)

Figure 136. MYC co-expression network in head and neck cancer

Example 137: MYC pathway enrichment

result <- tcga_enrichment(
  var1 = "MYC",
  var1_modal = "RNAseq",
  var1_cancers = "HNSC",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  method = "pearson",
  top_n = 20
)

Figure 137. MYC drives proliferation and metabolic pathways

Example 138: CD274 (PD-L1) expression pathway analysis

result <- tcga_enrichment(
  var1 = "CD274",
  var1_modal = "RNAseq",
  var1_cancers = "SKCM",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  method = "spearman",
  top_n = 20
)

Figure 138. PD-L1 expression correlates with immune activation pathways

Example 139: AR expression pathway analysis

result <- tcga_enrichment(
  var1 = "AR",
  var1_modal = "RNAseq",
  var1_cancers = "PRAD",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  method = "pearson",
  top_n = 20
)

Figure 139. Androgen receptor drives hormone signaling in prostate cancer

Example 140: BRAF expression pathway analysis

result <- tcga_enrichment(
  var1 = "BRAF",
  var1_modal = "RNAseq",
  var1_cancers = "THCA",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  method = "pearson",
  top_n = 20
)

Figure 140. BRAF expression-associated pathways in thyroid cancer

Scenario 14-15: Multi-Gene Expression Pathway Analysis

Example 141: EGFR-KRAS comparative genome scan

result <- tcga_enrichment(
  var1 = c("EGFR", "KRAS"),
  var1_modal = "RNAseq",
  var1_cancers = "LUAD",
  analysis_type = "genome",
  genome_modal = "RNAseq",
  method = "pearson",
  top_n = 50
)

Figure 141. Differential co-expression networks for EGFR vs KRAS

Example 142: Pan-cancer KRAS expression comparison

result <- tcga_enrichment(
  var1 = "KRAS",
  var1_modal = "RNAseq",
  var1_cancers = c("LUAD", "COAD"),
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  method = "pearson",
  top_n = 15
)

Figure 142. KRAS-correlated pathways across lung and colon cancers

Signature-Driven Pathway Analysis

Example 143: TMB signature pathway analysis

result <- tcga_enrichment(
  var1 = "TMB",
  var1_modal = "Signature",
  var1_cancers = "BRCA",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  method = "spearman",
  top_n = 20
)

Figure 143. High TMB tumors show immune activation pathways

Example 144: TIL score pathway analysis

result <- tcga_enrichment(
  var1 = "TIL_Score",
  var1_modal = "Signature",
  var1_cancers = "LUAD",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  method = "spearman",
  top_n = 20
)

Figure 144. TIL score correlates with adaptive immune response

Example 145: Stemness signature pathway analysis

result <- tcga_enrichment(
  var1 = "Stemness",
  var1_modal = "Signature",
  var1_cancers = "GBM",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  method = "spearman",
  top_n = 20
)

Figure 145. Stemness signature associates with developmental pathways

Example 146: Purity signature pathway analysis

result <- tcga_enrichment(
  var1 = "Purity",
  var1_modal = "Signature",
  var1_cancers = "COAD",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  method = "pearson",
  top_n = 20
)

Figure 146. Tumor purity inversely correlates with immune pathways

Immune Cell-Driven Pathway Analysis

Example 147: CD8+ T cell pathway analysis

result <- tcga_enrichment(
  var1 = "T_cells_CD8",
  var1_modal = "ImmuneCell",
  var1_cancers = "LUAD",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  immune_algorithm = "cibersort",
  method = "spearman",
  top_n = 20
)

Figure 147. CD8+ T cell infiltration correlates with immune checkpoint pathways

Example 148: All T cell algorithms pathway analysis

result <- tcga_enrichment(
  var1 = c("T_cells_CD8_cibersort", "T_cells_CD8_epic", "T_cells_CD8_mcpcounter",
           "T_cells_CD8_quantiseq", "T_cells_CD8_timer", "T_cells_CD8_naive_xcell",
           "T_cells_CD8_xcell", "T_cells_CD8_Tcm_xcell", "T_cells_CD8_Tem_xcell"),
  var1_modal = "ImmuneCell",
  var1_cancers = "LUAD",
  analysis_type = "enrichment",
  enrich_database = "MsigDB",
  msigdb_category = "H",
  method = "spearman",
  top_n = 15
)

Figure 148. Consensus CD8+ T cell pathway analysis across deconvolution algorithms


Survival Analysis (Scenarios 16-17)

Scenario 16: Single Variable Survival Analysis

Example 149: TP53 expression and overall survival

result <- tcga_survival(
  var1 = "TP53",
  var1_modal = "RNAseq",
  var1_cancers = "BRCA",
  surv_type = "OS",
  cutoff_type = "optimal"
)

Figure 149. TP53 expression predicts survival in breast cancer. Left: KM curve with log-rank test. Right: Cox regression with HR=1.85, p=0.012

Example 150: TP53 mutation and survival

result <- tcga_survival(
  var1 = "TP53",
  var1_modal = "Mutation",
  var1_cancers = "BRCA",
  surv_type = "OS"
)

Figure 150. TP53 mutations associated with worse survival outcomes

Example 151: PIK3CA mutation and survival

result <- tcga_survival(
  var1 = "PIK3CA",
  var1_modal = "Mutation",
  var1_cancers = "BRCA",
  surv_type = "OS"
)

Figure 151. PIK3CA mutation shows protective effect in breast cancer

Example 152: TMB signature and survival

result <- tcga_survival(
  var1 = "TMB",
  var1_modal = "Signature",
  var1_cancers = "BRCA",
  surv_type = "OS",
  cutoff_type = "optimal"
)

Figure 152. High TMB predicts better survival (immunotherapy benefit)

Example 153: Purity signature and survival

result <- tcga_survival(
  var1 = "Purity",
  var1_modal = "Signature",
  var1_cancers = "OV",
  surv_type = "OS",
  cutoff_type = "median"
)

Figure 153. Tumor purity predicts survival in ovarian cancer

Example 154: Stemness signature and survival

result <- tcga_survival(
  var1 = "Stemness",
  var1_modal = "Signature",
  var1_cancers = "COAD",
  surv_type = "OS",
  cutoff_type = "optimal"
)

Figure 154. High stemness signature predicts poor prognosis

Example 155: Age and survival

result <- tcga_survival(
  var1 = "Age",
  var1_modal = "Clinical",
  var1_cancers = "BRCA",
  surv_type = "OS",
  cutoff_type = "optimal"
)

Figure 155. Advanced age is a poor prognostic factor

Example 156: Stage and survival

result <- tcga_survival(
  var1 = "Stage",
  var1_modal = "Clinical",
  var1_cancers = "LUAD",
  surv_type = "OS"
)

Figure 156. Tumor stage strongly predicts survival outcome

Example 157: Race and survival

result <- tcga_survival(
  var1 = "Race",
  var1_modal = "Clinical",
  var1_cancers = "BRCA",
  surv_type = "OS"
)

Figure 157. Racial disparities in breast cancer survival

Example 158: Gender and survival in kidney cancer

result <- tcga_survival(
  var1 = "Gender",
  var1_modal = "Clinical",
  var1_cancers = "KIRC",
  surv_type = "OS"
)

Figure 158. Female patients show survival advantage in kidney cancer

Example 159: CNV and survival

result <- tcga_survival(
  var1 = "MYC",
  var1_modal = "CNV",
  var1_cancers = "BRCA",
  surv_type = "OS",
  cutoff_type = "optimal"
)

Figure 159. MYC amplification predicts poor prognosis

Example 160: Methylation and survival

result <- tcga_survival(
  var1 = "TP53",
  var1_modal = "Methylation",
  var1_cancers = "BRCA",
  surv_type = "OS",
  cutoff_type = "optimal"
)

Figure 160. TP53 promoter methylation impacts survival

Example 161: MLH1 methylation and survival

result <- tcga_survival(
  var1 = "MLH1",
  var1_modal = "Methylation",
  var1_cancers = "COAD",
  surv_type = "OS",
  cutoff_type = "optimal"
)

Figure 161. MLH1 methylation predicts better survival due to MSI

Example 162: miRNA and survival

result <- tcga_survival(
  var1 = "hsa-let-7a-1",
  var1_modal = "miRNA",
  var1_cancers = "BRCA",
  surv_type = "OS",
  cutoff_type = "optimal"
)

Figure 162. let-7a expression is a favorable prognostic marker

Example 163: miRNA survival in lung cancer

result <- tcga_survival(
  var1 = "hsa-let-7a-1",
  var1_modal = "miRNA",
  var1_cancers = "LUAD",
  surv_type = "OS",
  cutoff_type = "optimal"
)

Figure 163. let-7a predicts survival in lung adenocarcinoma

Example 164: Immune cell and survival

result <- tcga_survival(
  var1 = "T_cells_CD8",
  var1_modal = "ImmuneCell",
  var1_cancers = "LUAD",
  surv_type = "OS",
  immune_algorithm = "cibersort",
  cutoff_type = "optimal"
)

Figure 164. High CD8+ T cell infiltration predicts favorable outcome

Example 165: Progression-free survival analysis

result <- tcga_survival(
  var1 = "KRAS",
  var1_modal = "Mutation",
  var1_cancers = "LUAD",
  surv_type = "PFS"
)

Figure 165. KRAS mutation and progression-free survival

Example 166: KRAS expression and PFS

result <- tcga_survival(
  var1 = "KRAS",
  var1_modal = "RNAseq",
  var1_cancers = "LUAD",
  surv_type = "PFS",
  cutoff_type = "optimal"
)

Figure 166. KRAS expression level predicts disease progression

Example 167: TIL score and PFS

result <- tcga_survival(
  var1 = "TIL_Score",
  var1_modal = "Signature",
  var1_cancers = "LUAD",
  surv_type = "PFS",
  cutoff_type = "optimal"
)

Figure 167. TIL score predicts progression-free survival

Example 168: CNV and PFS

result <- tcga_survival(
  var1 = "ERBB2",
  var1_modal = "CNV",
  var1_cancers = "BRCA",
  surv_type = "PFS",
  cutoff_type = "optimal"
)

Figure 168. ERBB2 amplification and disease progression

Example 169: Macrophages and PFS

result <- tcga_survival(
  var1 = "Macrophages_M1",
  var1_modal = "ImmuneCell",
  var1_cancers = "LIHC",
  surv_type = "PFS",
  immune_algorithm = "cibersort",
  cutoff_type = "optimal"
)

Figure 169. M1 macrophage infiltration predicts better PFS in liver cancer

Example 170: Subtype-specific survival - TNBC

result <- tcga_survival(
  var1 = "TP53",
  var1_modal = "Mutation",
  var1_cancers = "BRCA_TNBC",
  surv_type = "OS"
)

Figure 170. TP53 mutation in triple-negative breast cancer

Example 171: Subtype-specific survival - IDC

result <- tcga_survival(
  var1 = "ESR1",
  var1_modal = "RNAseq",
  var1_cancers = "BRCA_IDC",
  surv_type = "OS",
  cutoff_type = "optimal"
)

Figure 171. ESR1 expression predicts survival in invasive ductal carcinoma

Example 172: Subtype-specific survival - IDC TP53 mutation

result <- tcga_survival(
  var1 = "TP53",
  var1_modal = "Mutation",
  var1_cancers = "BRCA_IDC",
  surv_type = "OS"
)

Figure 172. TP53 mutation impact in IDC subtype

Example 173: Colorectal cancer subtype survival

result <- tcga_survival(
  var1 = "KRAS",
  var1_modal = "Mutation",
  var1_cancers = "COAD_LCC",
  surv_type = "OS"
)

Figure 173. KRAS mutation in left-sided colon cancer

Example 174: Esophageal cancer subtype survival

result <- tcga_survival(
  var1 = "TP53",
  var1_modal = "Mutation",
  var1_cancers = "ESCA_ESCC",
  surv_type = "OS"
)

Figure 174. TP53 mutation in esophageal squamous cell carcinoma

Scenario 17: Multi-Variable Survival (Forest Plot)

Example 175: Multi-gene forest plot

result <- tcga_survival(
  var1 = c("TP53", "ESR1", "ERBB2"),
  var1_modal = "RNAseq",
  var1_cancers = "BRCA",
  surv_type = "OS",
  cutoff_type = "optimal"
)

Figure 175. Multivariate Cox analysis for breast cancer biomarkers

Example 176: Multi-mutation forest plot

result <- tcga_survival(
  var1 = c("KRAS", "EGFR", "TP53"),
  var1_modal = "Mutation",
  var1_cancers = "LUAD",
  surv_type = "OS"
)

Figure 176. Independent prognostic value of key mutations in lung cancer

Example 177: Multi-signature forest plot

result <- tcga_survival(
  var1 = c("TMB", "TIL_Score", "IFN_Gamma"),
  var1_modal = "Signature",
  var1_cancers = "BRCA",
  surv_type = "OS",
  cutoff_type = "optimal"
)

Figure 177. Immune signatures as independent prognostic factors

Example 178: Multi-CNV forest plot

result <- tcga_survival(
  var1 = c("MYC", "ERBB2", "CCND1"),
  var1_modal = "CNV",
  var1_cancers = "BRCA",
  surv_type = "OS",
  cutoff_type = "optimal"
)

Figure 178. Amplification events as prognostic markers

Example 179: Multi-methylation forest plot

result <- tcga_survival(
  var1 = c("TP53", "ESR1", "BRCA1"),
  var1_modal = "Methylation",
  var1_cancers = "BRCA",
  surv_type = "OS",
  cutoff_type = "optimal"
)

Figure 179. Epigenetic markers in survival prediction

Example 180: Multi-miRNA forest plot

result <- tcga_survival(
  var1 = c("hsa-let-7a-1", "hsa-mir-21", "hsa-mir-200c"),
  var1_modal = "miRNA",
  var1_cancers = "BRCA",
  surv_type = "OS",
  cutoff_type = "optimal"
)

Figure 180. miRNA panel for survival stratification

Example 181: Multi-immune cell forest plot

result <- tcga_survival(
  var1 = c("T_cells_CD8", "Macrophages_M1", "NK_cells_activated"),
  var1_modal = "ImmuneCell",
  var1_cancers = "BRCA",
  surv_type = "OS",
  immune_algorithm = "cibersort",
  cutoff_type = "optimal"
)

Figure 181. Immune cell panel predicts overall survival

Example 182: Multi-clinical variable forest plot

result <- tcga_survival(
  var1 = c("Age", "Gender", "Race"),
  var1_modal = "Clinical",
  var1_cancers = "BRCA",
  surv_type = "OS"
)

Figure 182. Demographic variables in multivariate survival model

Example 183: Stage and age forest plot

result <- tcga_survival(
  var1 = c("Stage", "Age"),
  var1_modal = "Clinical",
  var1_cancers = "BRCA",
  surv_type = "OS"
)

Figure 183. Stage remains the strongest prognostic factor

Example 184: ER-PR-HER2 trinity forest plot

result <- tcga_survival(
  var1 = c("ER", "PR", "HER2"),
  var1_modal = "Clinical",
  var1_cancers = "BRCA",
  surv_type = "PFS"
)

Figure 184. Hormone receptor status predicts disease progression

Example 185: Pan-cancer TP53 mutation forest plot

result <- tcga_survival(
  var1 = "TP53",
  var1_modal = "Mutation",
  var1_cancers = c("BRCA", "LUAD"),
  surv_type = "OS"
)

Figure 185. TP53 mutation shows cancer-specific survival effects

Example 186: Pan-cancer TP53 expression forest plot

result <- tcga_survival(
  var1 = "TP53",
  var1_modal = "RNAseq",
  var1_cancers = c("BRCA", "LUAD"),
  surv_type = "OS",
  cutoff_type = "optimal"
)

Figure 186. TP53 expression has opposite effects in different cancers


Advanced Features

Data Modality Options

Modality Description Example Variables
RNAseq mRNA expression (log2 TPM) TP53, ESR1, MYC, EGFR
Mutation Binary mutation status TP53, KRAS, PIK3CA, BRAF
CNV Copy number variation MYC, ERBB2, CCND1, EGFR
Methylation Promoter methylation beta values TP53, ESR1, MLH1, BRCA1
miRNA microRNA expression hsa-let-7a-1, hsa-mir-21
Clinical Patient demographics and clinical features Age, Gender, Stage, ER, PR, HER2
ImmuneCell Immune cell infiltration scores T_cells_CD8, Macrophages_M1, NK_cells
Signature Molecular signatures TMB, Purity, TIL_Score, Stemness, MSI

Immune Cell Algorithms

SLTCGA integrates 7 immune deconvolution algorithms:

  • CIBERSORT: 22 immune cell types
  • EPIC: 8 cell types
  • MCPcounter: 10 cell types
  • quanTIseq: 11 cell types
  • TIMER: 6 cell types
  • xCell: 64 cell types
  • Consensus: Average across algorithms

Enrichment Databases

  • MsigDB Hallmark: 50 curated gene sets (default)
  • MsigDB C2 KEGG: KEGG pathways
  • MsigDB C2 Reactome: Reactome pathways
  • MsigDB C5 GO: Gene Ontology (BP, MF, CC)
  • MsigDB C6: Oncogenic signatures
  • MsigDB C7: Immunologic signatures

Statistical Methods

Correlation Analysis:

  • Continuous vs Continuous: Pearson/Spearman correlation
  • Categorical vs Continuous: Wilcoxon/Kruskal-Wallis test
  • Categorical vs Categorical: Chi-square/Fisher's exact test

Enrichment Analysis:

  • Differential expression: Wilcoxon/limma
  • Pathway enrichment: GSEA (fgsea)

Survival Analysis:

  • Single variable: Kaplan-Meier + Cox regression
  • Multiple variables: Multivariate Cox (Forest plot)
  • Cutoff selection: Optimal (survminer) or Median

Cancer Types and Subtypes

33 Main Cancer Types

TCGA cancer types supported:

  • BRCA: Breast invasive carcinoma
  • LUAD: Lung adenocarcinoma
  • LUSC: Lung squamous cell carcinoma
  • COAD: Colon adenocarcinoma
  • READ: Rectum adenocarcinoma
  • KIRC: Kidney renal clear cell carcinoma
  • KIRP: Kidney renal papillary cell carcinoma
  • HNSC: Head and neck squamous cell carcinoma
  • LIHC: Liver hepatocellular carcinoma
  • THCA: Thyroid carcinoma
  • PRAD: Prostate adenocarcinoma
  • STAD: Stomach adenocarcinoma
  • SKCM: Skin cutaneous melanoma
  • BLCA: Bladder urothelial carcinoma
  • UCEC: Uterine corpus endometrial carcinoma
  • GBM: Glioblastoma multiforme
  • LGG: Brain lower grade glioma
  • OV: Ovarian serous cystadenocarcinoma
  • ESCA: Esophageal carcinoma
  • PAAD: Pancreatic adenocarcinoma
  • KICH: Kidney chromophobe
  • PCPG: Pheochromocytoma and paraganglioma
  • SARC: Sarcoma
  • TGCT: Testicular germ cell tumors
  • THYM: Thymoma
  • MESO: Mesothelioma
  • ACC: Adrenocortical carcinoma
  • UVM: Uveal melanoma
  • DLBC: Lymphoid neoplasm diffuse large B-cell lymphoma
  • CESC: Cervical squamous cell carcinoma
  • CHOL: Cholangiocarcinoma
  • UCS: Uterine carcinosarcoma
  • CRC: Colorectal cancer (COAD+READ)

32 Molecular Subtypes

Breast Cancer (BRCA):

  • BRCA_IDC: Invasive ductal carcinoma
  • BRCA_ILC: Invasive lobular carcinoma
  • BRCA_TNBC: Triple-negative breast cancer

Colon Cancer (COAD):

  • COAD_LCC: Left-sided colon cancer
  • COAD_RCC: Right-sided colon cancer
  • COAD_MAC: Mucinous adenocarcinoma
  • COAD_TC: Transverse colon

Lung Cancer:

  • NSCLC: Non-small cell lung cancer (LUAD+LUSC)

Kidney Cancer:

  • KRCC: Kidney renal cell carcinoma (KIRC+KIRP+KICH)

Glioma:

  • GLIOMA: Glioma (GBM+LGG)
  • LGG_ASTROCYTOMA: Astrocytoma
  • LGG_OLIGODENDROGLIOMA: Oligodendroglioma
  • LGG_OLIGOASTROCYTOMA: Oligoastrocytoma

Esophageal Cancer (ESCA):

  • ESCA_ESCC: Esophageal squamous cell carcinoma
  • ESCA_EAC: Esophageal adenocarcinoma

Head and Neck Cancer (HNSC):

  • HNSC_OSCC: Oral squamous cell carcinoma
  • HNSC_LSCC: Laryngeal squamous cell carcinoma
  • HNSC_OPSCC: Oropharyngeal squamous cell carcinoma

Cervical Cancer (CESC):

  • CESC_CSCC: Cervical squamous cell carcinoma

And more...


Output Files

All analyses automatically save:

  1. Plots (PNG, 300 DPI): sltcga_output/[analysis]_[cancer]_[variables]_[modality].png
  2. Statistics (TSV): Results tables with p-values, correlations, etc.
  3. Raw Data (TSV): Merged data matrix for downstream analysis

Citation

If you use SLTCGA in your research, please cite:

Liu Z, et al. (2025). SLTCGA: A Comprehensive R Package for Multi-Omics 
Analysis of The Cancer Genome Atlas. [Journal], [Volume]([Issue]), [Pages].

Contact


License

GPL-3.0 License. See LICENSE.md for details.


Acknowledgments

  • The Cancer Genome Atlas (TCGA) Research Network
  • Bioconductor community
  • All package dependencies maintainers

Last updated: 2025

About

Multi-Omics Analysis Toolkit for TCGA Cancer Database

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages