This system has been created to perform improved compression using Data Mining Algorithms.
Jepeg_Haufmann.m- > This performs the jpeg compressiontestf2.m-> This performs the pattern mining and huffman encodingdecode.m-> This performs the decodingcombine.m-> This combines all the filesmeasures.m-> This provides the metrics
- JPEG Compression
- ARM - Apriori Algorithm
- FP Huffmann Encoding and Decoding
- Image converted to matrix
- Algorithms run over dataset
- Output image regained from matrix
Efficiency = 85.6 % with reference to exisiting system Ideal image size:
- 8X8
- 16X16
- 32X32
- 64X64
- 128X128
- 256X256
- 512X512
Not ideal for Large sized images
Citation:
If you use this code in your work then please cite the paper - Lossy Image Compression using Frequent Pattern Mining based Huffman Encoding with the following:
@INPROCEEDINGS{8487850,
author={S. {Biswas} and N. {Chennu} and H. {Valveti} and C. {Oswald} and B. {Sivaselvan}},
booktitle={2017 14th IEEE India Council International Conference (INDICON)},
title={Lossy Image Compression using Frequent Pattern Mining based Huffman Encoding},
year={2017},
volume={},
number={},
pages={1-6},
keywords={data compression;data mining;discrete cosine transforms;Huffman codes;image coding;runlength codes;frequent pattern mining;lossy compression techniques;lossless compression techniques;lossy algorithms;lossless algorithms;modified DCT algorithm;decoding;modified run-length encoding;compression ratio;image quality;lossy image compression;Huffman encoding;Image coding;Transform coding;Matrix converters;Discrete cosine transforms;Quantization (signal);Data mining;Itemsets;Lossy algorithm;Modified DCT algorithm;Compression ratio;Frequent Pattern Mining;Huffman Encoding;PSNR},
doi={10.1109/INDICON.2017.8487850},
ISSN={2325-9418},
month={Dec},}