Skip to content

Subh1m/ImageCompression_DataMining

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Image Compression Data Mining

This system has been created to perform improved compression using Data Mining Algorithms.

Running Instructions:

  1. Jepeg_Haufmann.m - > This performs the jpeg compression
  2. testf2.m -> This performs the pattern mining and huffman encoding
  3. decode.m -> This performs the decoding
  4. combine.m -> This combines all the files
  5. measures.m -> This provides the metrics

Algorithms used:

  1. JPEG Compression
  2. ARM - Apriori Algorithm
  3. FP Huffmann Encoding and Decoding

Software: MATLAB 2014a

Steps:

  1. Image converted to matrix
  2. Algorithms run over dataset
  3. Output image regained from matrix

Efficiency = 85.6 % with reference to exisiting system Ideal image size:

  1. 8X8
  2. 16X16
  3. 32X32
  4. 64X64
  5. 128X128
  6. 256X256
  7. 512X512

Not ideal for Large sized images

Citation:

If you use this code in your work then please cite the paper - Lossy Image Compression using Frequent Pattern Mining based Huffman Encoding with the following:

@INPROCEEDINGS{8487850, 
author={S. {Biswas} and N. {Chennu} and H. {Valveti} and C. {Oswald} and B. {Sivaselvan}}, 
booktitle={2017 14th IEEE India Council International Conference (INDICON)}, 
title={Lossy Image Compression using Frequent Pattern Mining based Huffman Encoding}, 
year={2017}, 
volume={}, 
number={}, 
pages={1-6}, 
keywords={data compression;data mining;discrete cosine transforms;Huffman codes;image coding;runlength codes;frequent pattern mining;lossy compression techniques;lossless compression techniques;lossy algorithms;lossless algorithms;modified DCT algorithm;decoding;modified run-length encoding;compression ratio;image quality;lossy image compression;Huffman encoding;Image coding;Transform coding;Matrix converters;Discrete cosine transforms;Quantization (signal);Data mining;Itemsets;Lossy algorithm;Modified DCT algorithm;Compression ratio;Frequent Pattern Mining;Huffman Encoding;PSNR}, 
doi={10.1109/INDICON.2017.8487850}, 
ISSN={2325-9418}, 
month={Dec},}

About

Compression of Image using Data Mining

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published