Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
73 changes: 63 additions & 10 deletions source/calculus/source/01-LT/01.ptx
Original file line number Diff line number Diff line change
Expand Up @@ -17,10 +17,18 @@
In <xref ref="limit_censored" /> the graph of a function is given, but something is wrong. The graphic card failed and one portion did not render properly. We can’t see what is happening in the neighborhood of <m>x=2</m>.
</p>
<figure xml:id="limit_censored">
<image width="50%" source="limit_censored.png" />
<image width="50%">
<sageplot>
x = var('x')
f(x) = -x^3+5*x^2-5.5*x
p = plot(f,(x,-1,3.5),ymin=-2,ymax=3, gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2, aspect_ratio=1)
q = line([(2,0.1),(2,3)],thickness=10,color='black')
sh = p+q
sh
</sageplot>
</image>
<caption>A graph of a function that has not been rendered properly.</caption>
</figure>

</introduction>
<task>
<p>
Expand Down Expand Up @@ -53,10 +61,18 @@
In <xref ref="limit_uncensored" /> the graphic card is working again and we can see more clearly what is happening in the neighborhood of <m>x=2</m>.
</p>
<figure xml:id="limit_uncensored">
<image width="50%" source="limit_uncensored.png" />
<image width="50%">
<sageplot>
x = var('x')
f(x) = -x^3+5*x^2-5.5*x
p = plot(f,(x,-1,3.5),ymin=-2,ymax=3, gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2, aspect_ratio=1)
q = circle((2,1), .1,thickness=2, fill=True, facecolor="white")
sh=p+q
sh
</sageplot>
</image>
<caption>A graph of a function that has rendered properly</caption>
</figure>

</introduction>
<task>
<p>
Expand Down Expand Up @@ -130,10 +146,23 @@

</p>
<figure xml:id="limit-left-and-right">
<image width="50%" source="limit-left-and-right.png" />
<image width="50%">
<sageplot>
x = var('x')
f(x) = piecewise([((-3,-0.05),-1),((0.05,3),1)])
p = plot(f,(x,-3,3),ymin=-2,ymax=2, gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2)
q = circle((0,-1), .1,thickness=1, fill=True, facecolor="white")
r = circle((0,1), .1,thickness=1, fill=True, facecolor="white")
s = circle((0,0), .1,thickness=1, fill=True, facecolor="blue")
sh = p+q+r+s
sh
</sageplot>
</image>
<caption>A piecewise-defined function</caption>
</figure>

<!--

-->
</introduction>

<p>
Expand Down Expand Up @@ -205,11 +234,20 @@
Consider the following graph:
</p>
<figure xml:id="limits-one-sided-fluency">
<image width="50%" source="limits-one-sided-fluency.png" />
<image width="50%">
<sageplot>
x=var('x')
f(x) = piecewise([((-7,-1),-0.5*x+1.5),((-0.95,1.95),1/(x+1)),((1.96,7),-3*cos(pi*x))])
c1 = circle((-1,2), 0.1,thickness=1,fill=True, facecolor="white")
c2 = circle((2,1/3),0.1,thickness=1,fill=True, facecolor="white")
c3 = circle((2,-3),0.1,thickness=1, fill=True, facecolor="blue")
p=plot(f, (x,-7,7), ymin=-4, ymax=6, gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2)
sh=p+c1+c2+c3
sh
</sageplot>
</image>
<caption>Another piecewise-defined function</caption>
</figure>


</introduction>
<task>
<p>
Expand Down Expand Up @@ -293,7 +331,22 @@
<statement>
<p> Let’s see an example of the application of this theorem. First examine the following picture. Explain why, from the picture, it seems that both assumptions of the theorem hold. </p>
<figure xml:id="squeeze">
<image width="100%" source="squeeze.png" />
<image>
<sageplot>
x=var('x')
h(x) = 1
g(x) = cos(0.5*x)
f(x) = cos(x)
p1=plot(f, (x,-pi,pi), ymin=-1.5, ymax=1.5, gridlines=True, axes_labels=('$x$',''), thickness=2, color="blue")
p2=plot(g, (x,-pi,pi), ymin=-1.5, ymax=1.5, gridlines=True, axes_labels=('$x$',''), thickness=2, color="red")
p3=plot(h, (x,-pi,pi), ymin=-1.5, ymax=1.5, gridlines=True, axes_labels=('$x$',''), thickness=2, color="green")
label1 = text('$h(x)$', (2,1.25), color="green", fontsize="xx-large")
label2 = text('$g(x)$', (2,.75), color = "red", fontsize="xx-large")
label3 = text('$f(x)$', (2,-.75),color = "blue", fontsize="xx-large")
sh = p1+p2+p3+label1+label2+label3
sh
</sageplot>
</image>
<caption>A pictorial example of the Squeeze Theorem.</caption>
</figure>
</statement>
Expand Down
18 changes: 14 additions & 4 deletions source/calculus/source/01-LT/02.ptx
Original file line number Diff line number Diff line change
Expand Up @@ -260,11 +260,21 @@ the function as <m>x</m> tends to 2?


<activity xml:id = "activity-limits-numerically5">
<introduction>
<p> In <xref ref="figure-limit-numerical-5" /> is the graph for <m>f(x) = \sin\left(\dfrac{1}{x}\right)</m>. Several values for <m>f(x)</m> in the neighborhood of <m>x = 0</m> are approximated in <xref ref = "table-limit-numerical5"/>. </p>
<introduction>
<p>
In <xref ref="figure-limit-numerical-5" /> is the graph for <m>f(x) = \sin\left(\dfrac{1}{x}\right)</m>. Several values for <m>f(x)</m> in the neighborhood of <m>x = 0</m> are approximated in <xref ref = "table-limit-numerical5"/>.
</p>
<figure xml:id="figure-limit-numerical-5">
<image width="50%" source="limits_numerical5_graph.png" />
<caption>Graph of <m>f(x) = \sin(1/x)</m>.</caption>
<image width="50%">
<sageplot>
x = var('x')
f = sin(1/x)
p1 = plot(f,(x,-1,-0.01), ymin=-1,ymax=1, gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=1, color='blue', aspect_ratio=1)
p2 = plot(f,(x,0.01,1), ymin=-1,ymax=1, gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=1, color='blue', aspect_ratio=1)
p1+p2
</sageplot>
</image>
<caption>Graph of <m>f(x) = \sin(1/x)</m>.</caption>
</figure>
<table xml:id="table-limit-numerical5">
<tabular halign="center">
Expand Down
89 changes: 33 additions & 56 deletions source/calculus/source/01-LT/03.ptx
Original file line number Diff line number Diff line change
Expand Up @@ -202,66 +202,43 @@
</p>
<sidebyside>
<figure>
<image width="50%" xml:id="two-functions-limits">
<latex-image>
\begin{tikzpicture}[scale=1]
\begin{axis}[ %human,
axis lines=middle,
grid=major,
xmin=-2, xmax=8.5,
ymin=-3, ymax=3,
xtick={-2,-1,...,8},
ytick={-4,-3,...,4},
tick style={thick},
% x label style={at={(axis description cs:1,0.7)}},
% y label style={at={(axis description cs:0.4,1)}},
ylabel=$y$,
xlabel=$x$,
]
\addplot[domain=-2:1, blue, ultra thick] {(1/3)*(x)-1/3};
\addplot[domain=1:5, blue, ultra thick] {-0.5*x +0.5};
\addplot[domain=5:7, blue, ultra thick] {x-5};
\addplot[mark=none, color=blue, nodes near coords={$f(x)$}] coordinates {(2,1)};
\addplot [only marks, blue] table {
5 0 \\
1 2 \\
8 2 \\
};

\addplot[only marks, color=blue, mark=*, fill=white] coordinates{(1,0) };

\addplot[only marks, color=blue, mark=*, fill=white] coordinates {(5,-2) };

\addplot[only marks, color=blue, mark=*, fill=white] coordinates {(7,2) };


\end{axis}
\end{tikzpicture}
</latex-image>
</image>
<image width="50%">
<sageplot>
x=var('x')
f = (1/3)*x-1/3
g= -0.5*x+0.5
h = x-5
b = polygon2d([[-3,-5],[-3,4],[9,4],[9,-5]], fill=False, thickness=0)
p1 = plot(f,(x,-3,1), gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2,color='blue',aspect_ratio=1, xmin=-3, xmax=9, ymin=-5, ymax=4)
p2 = plot(g,(x,1,5), gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2,color='blue',aspect_ratio=1)
p3 = plot(h,(x,5,7), gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2,color='blue',aspect_ratio=1)
c1 = circle((1,0),0.1,fill=True,facecolor='white',thickness=1)
c2 = circle((1,2),0.1,fill=True,facecolor='blue',thickness=1)
c3 = circle((5,-2),0.1,fill=True,facecolor='white',thickness=1)
c4 = circle((5,0),0.1,fill=True,facecolor='blue', thickness=1)
c5 = circle((7,2),0.1,fill=True,facecolor='white',thickness=1)
c6 = circle((8,2),0.1,fill=True,facecolor='blue',thickness=1)
b+p1+p2+p3+c1+c2+c3+c4+c5+c6
</sageplot>
</image>
<caption> The graph of <m>f(x)</m>.</caption>
</figure>
<figure>
<image width="50%" xml:id="graph-piecewise">
<latex-image>
\begin{tikzpicture}[scale=1]

\begin{axis}[ axis lines=middle, %human,
grid=major, grid,xtick={-3,-2,...,3}, ytick={-2,-1,...,4}, ymin=-2.2,xmin=-3.5,ymax=4.5,xmax=3.5, ylabel={}, xlabel={$x$}]
\addplot[domain=-3:0, color=blue, samples=100]{0.5*x};
\addplot[domain=0:2, color=blue, samples=100]{2^x};
\addplot[domain=2:4, color=blue, samples=50]{0.5*x+3};

\addplot[only marks, color=blue, mark=*, fill=blue] coordinates{(0,1) };

\addplot[only marks, color=blue, mark=*, fill=white] coordinates {(0,0) };


\addplot[mark=none, color=blue, nodes near coords={$g(x)$}] coordinates {(2,1)};
\end{axis}
\end{tikzpicture}
</latex-image>
</image>
<sageplot>
x=var('x')
f = 0.5*x
g = 2^x
h = 0.5*x+3
b = polygon2d([[-6,-3],[-6,6],[6,6],[6,-3]], fill=False, thickness=0)
p1 = plot(f,(x,-6,0), gridlines=True, axes_labels=('$x$','$g(x)$'), thickness=2,color='blue',aspect_ratio=1, xmin=-6, xmax=6, ymin=-3, ymax=6)
p2 = plot(g,(x,0,2), gridlines=True, axes_labels=('$x$','$g(x)$'), thickness=2,color='blue',aspect_ratio=1)
p3 = plot(h,(x,2,6), gridlines=True, axes_labels=('$x$','$g(x)$'), thickness=2,color='blue',aspect_ratio=1)
c1 = circle((0,0),0.1, fill=True, facecolor='white', thickness=1)
c2 = circle((0,1),0.1, fill=True, facecolor='blue', thickness=1)
b+p1+p2+p3+c1+c2
</sageplot>
</image>
<caption> The graph of <m>g(x)</m>.</caption>
</figure>
</sidebyside>
Expand Down
105 changes: 61 additions & 44 deletions source/calculus/source/01-LT/04.ptx
Original file line number Diff line number Diff line change
Expand Up @@ -60,8 +60,26 @@
A function <m>f</m> defined on <m>-4 \lt x \lt 4</m> has the graph pictured below. Use the graph to answer each of the following questions.
</p>
<figure xml:id="figure-limits-different-kinds">
<image source="limits-different-kinds.png" width="50%">
<description>I need help with alt text for this that doesn't give the answers away.</description>
<image width="50%">
<sageplot>
x = var('x')
f = 2*x^2 + 16*x + 33
g = -x
h = x^2 + 0.5*x - 4
j = -2.5
k = sin(pi/(x-2))-3
p1 = plot(f,(x,-4,-3),ymin=-4,ymax=4, gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2, aspect_ratio=1)
p2 = plot(g,(x,-3,-2),ymin=-4,ymax=4, gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2, aspect_ratio=1)
p3 = plot(h,(x,-2,1),ymin=-4,ymax=4, gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2, aspect_ratio=1)
p4 = plot(j,(x,1,2),ymin=-4,ymax=4, gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2, aspect_ratio=1)
p5 = plot(k,(x,2.01,4),ymin=-4,ymax=4, gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2, aspect_ratio=1)
c1 = circle((-2,2),0.1,fill=True,facecolor='white',thickness=1)
c2 = circle((-2,-1),0.1,fill=True,facecolor='blue',thickness=1)
c3 = circle((-1,1),0.1,fill=True,facecolor='blue',thickness=1)
c4 = circle((-1,-3.5),0.1,fill=True,facecolor='white',thickness=1)
c5 = circle((3,-3),0.1,fill=True,facecolor='white',thickness=1)
p1+p2+p3+p4+p5+c1+c2+c3+c4+c5
</sageplot>
</image>
</figure>
</introduction>
Expand Down Expand Up @@ -154,8 +172,26 @@
questions below, consider the values <m>a = -3</m>, <m>-2</m>, <m>-1</m>, <m>0</m>, <m>1</m>, <m>2</m>, <m>3</m>.
</p>
<figure xml:id="figure-continuous-graph2">
<image source="limits-different-kinds.png" width="50%">
<description>(for accessibility)</description>
<image width="50%">
<sageplot>
x = var('x')
f = 2*x^2 + 16*x + 33
g = -x
h = x^2 + 0.5*x - 4
j = -2.5
k = sin(pi/(x-2))-3
p1 = plot(f,(x,-4,-3),ymin=-4,ymax=4, gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2, aspect_ratio=1)
p2 = plot(g,(x,-3,-2),ymin=-4,ymax=4, gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2, aspect_ratio=1)
p3 = plot(h,(x,-2,1),ymin=-4,ymax=4, gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2, aspect_ratio=1)
p4 = plot(j,(x,1,2),ymin=-4,ymax=4, gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2, aspect_ratio=1)
p5 = plot(k,(x,2.01,4),ymin=-4,ymax=4, gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2, aspect_ratio=1)
c1 = circle((-2,2),0.1,fill=True,facecolor='white',thickness=1)
c2 = circle((-2,-1),0.1,fill=True,facecolor='blue',thickness=1)
c3 = circle((-1,1),0.1,fill=True,facecolor='blue',thickness=1)
c4 = circle((-1,-3.5),0.1,fill=True,facecolor='white',thickness=1)
c5 = circle((3,-3),0.1,fill=True,facecolor='white',thickness=1)
p1+p2+p3+p4+p5+c1+c2+c3+c4+c5
</sageplot>
</image>
</figure>
</introduction>
Expand Down Expand Up @@ -236,46 +272,27 @@
<p>
Consider the function <m>f</m> whose graph is pictured below.
</p>
<figure>
<image width="50%" xml:id="graph-continuity-and-discontinuities">
<latex-image>
\begin{tikzpicture}[scale=1]
\begin{axis}[ %human,
axis lines=middle,
grid=major,
xmin=-2, xmax=8.5,
ymin=-3, ymax=3,
xtick={-2,-1,...,8},
ytick={-4,-3,...,4},
tick style={thick},
% x label style={at={(axis description cs:1,0.7)}},
% y label style={at={(axis description cs:0.4,1)}},
ylabel=$y$,
xlabel=$x$,
]
\addplot[domain=-2:1, blue, ultra thick] {(1/3)*(x)-1/3};
\addplot[domain=1:5, blue, ultra thick] {-0.5*x +0.5};
\addplot[domain=5:7, blue, ultra thick] {x-5};
\addplot[mark=none, color=blue, nodes near coords={$f(x)$}] coordinates {(2,1)};
\addplot [only marks, blue] table {
5 0 \\
1 2 \\
8 2 \\
};

\addplot[only marks, color=blue, mark=*, fill=white] coordinates{(1,0) };

\addplot[only marks, color=blue, mark=*, fill=white] coordinates {(5,-2) };

\addplot[only marks, color=blue, mark=*, fill=white] coordinates {(7,2) };


\end{axis}
\end{tikzpicture}
</latex-image>
</image>
<caption> The graph of <m>f(x)</m>.</caption>
</figure>
<figure>
<image width="50%">
<sageplot>
x=var('x')
f = (1/3)*x-1/3
g= -0.5*x+0.5
h = x-5
p1 = plot(f,(x,-2,1), ymin=-3,ymax=3, gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2,color='blue',aspect_ratio=1)
p2 = plot(g,(x,1,5), ymin=-3,ymax=3, gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2,color='blue',aspect_ratio=1)
p3 = plot(h,(x,5,7), ymin=-3,ymax=3, gridlines=True, axes_labels=('$x$','$f(x)$'), thickness=2,color='blue',aspect_ratio=1)
c1 = circle((1,0),0.1,fill=True,facecolor='white',thickness=1)
c2 = circle((1,2),0.1,fill=True,facecolor='blue',thickness=1)
c3 = circle((5,-2),0.1,fill=True,facecolor='white',thickness=1)
c4 = circle((5,0),0.1,fill=True,facecolor='blue', thickness=1)
c5 = circle((7,2),0.1,fill=True,facecolor='white',thickness=1)
c6 = circle((8,2),0.1,fill=True,facecolor='blue',thickness=1)
p1+p2+p3+c1+c2+c3+c4+c5+c6
</sageplot>
</image>
<caption> The graph of <m>f(x)</m>.</caption>
</figure>
<p>
Give a list of <m>x</m>-values where <m>f(x)</m> is not continuous. Be prepared to defend your answer based on <xref ref="definition-continuity"/>.
</p>
Expand Down
Loading
Loading