This repository contains machine learning models for various business use cases including sales forecasting and customer behavior prediction.
- Type: Linear Regression
- Purpose: Predicts ice cream sales based on weather and temporal factors
- Features: Date, DayOfWeek, Month, Temperature, Rainfall
- Target: IceCreamsSold
- Algorithm: Linear Regression
- Serialization Date: 2026-01-29T18:19:47.681000
- Scikit-learn Version: 1.3.0
- Type: Lasso Regression
- Purpose: Ice cream sales prediction with regularization
- Features: Date, DayOfWeek, Month, Temperature, Rainfall
- Target: IceCreamsSold
- Algorithm: Lasso Regression (alpha=1.0)
- Serialization Date: 2026-01-29T18:33:09.378000
- Scikit-learn Version: 1.3.0
- Type: Lasso Regression
- Purpose: Updated ice cream sales prediction model
- Features: Date, DayOfWeek, Month, Temperature, Rainfall
- Target: IceCreamsSold
- Algorithm: Lasso Regression (alpha=1.0)
- Serialization Date: 2026-01-29T18:42:52.078000
- Scikit-learn Version: 1.3.0
- Type: Lasso Regression
- Purpose: Predicts customer average spending based on purchase frequency
- Features: Name, AverageFrequency
- Target: AverageSpend
- Algorithm: Lasso Regression (alpha=1.0)
- Serialization Date: 2026-01-29T18:58:15.438000
- Scikit-learn Version: 1.3.0
All models use a scikit-learn Pipeline with the following preprocessing steps:
-
ColumnTransformer for feature-specific transformations:
- Numerical Features: Imputation + Scaling
SimpleImputer(median strategy)StandardScaler(for Lasso models) orpassthrough(for Linear Regression)
- Categorical Features: Imputation + Encoding
SimpleImputer(constant strategy with "missing")OneHotEncoder(first category drop, handle_unknown='ignore')
- Numerical Features: Imputation + Scaling
-
Regressor: Linear or Lasso regression
{
"input_data": {
"columns": ["Date", "DayOfWeek", "Month", "Temperature", "Rainfall"],
"index": [0, 1, 2],
"data": [
["2025-06-15", "Sunday", "June", 75.5, 0.0],
["2025-06-16", "Monday", "June", 72.0, 0.1],
["2025-06-17", "Tuesday", "June", 78.2, 0.0]
]
}
}