Skip to content

Releases: ThomasByr/point-cloud-visualizer

v0.3.7

31 Aug 08:20

Choose a tag to compare

Patches and Minor refactor

🚀 new features

argument hint default
-h or --help show help message and exit
-V or --version show program's version number and exit
-v or --verbose increase output verbosity
-i or --cbid force color by id (if color components are parsed)
-c or --cfg [PATH] path to the config file auto detect in tree
-f or --frac [F] * fraction of points for downsampling
-r or --voxel-size [S] * voxel size for downsampling
-d or --downsample feed back downsample to the saved point cloud render only
-s or --save [PATH] path to .npy file do not save scene
-p or --make-parent create parent directories if needed (for --save)
--no-exe do not execute the app (if --save)
--only [(<=?N)|(N(-N)?)(,\s*N(-N)?)*] only parse some entries of the config file parse all entries
python pcv.py --cfg <custom_load>.json5 -vips out/point_cloud.npy -dr10 --only "<=2,4,9-11"

loads the json5 config file (but only with entries n°1,2,4,9,10,11), verbose mode, use id to color points, downsample to have 1 point each 10 units and save result into .npy file and create parent directory if needed

json5 model is as follow (note that only x, y and z are mandatory in "pattern", "pattern" and "skip_first_line" can be overwritten in "configs", and that only "file_path" is not set by default):

{
  "default": {
    "pattern": "{?},{x},{y},{z},{r},{g},{b},{id}",
    "skip_first_line": true
  },
  "configs": [
    {
      "file_path": "<path to file n°1>.csv",
      "source_xyz": [<x1>, <y1>, <z1>]
    },
    {
      "file_path": "<path to file n°2>.csv",
      "source_xyz": [<x2>, <y2>, <z2>]
    },
    ...
  ]
}

⚙️ Builds

curl https://github.com/ThomasByr/point-cloud-visualizer/archive/refs/tags/v0.3.7.zip
unzip point-cloud-visualizer-0.3.7.zip -d point-cloud-visualizer
cd point-cloud-visualizer
conda env create -f environment.yml
conda activate o3d
# or pip install -r requirements.txt

v0.3.5

25 Aug 09:33

Choose a tag to compare

Next iteration of the first primary version ⚡

all intermediate versions from 0.3.0 to 0.3.5 are fine to use

🚀 new features

  • "{X}", "{Y}" and "{Z}" to the pattern for the config file
  • --voxel-size as an alternative to --frac
  • dowlsampling can be forwarded to the saved .npy file
  • cli speedup and better args checking
argument hint default
-h or --help show help message and exit
-V or --version show program's version number and exit
-v or --verbose increase output verbosity
-i or --cbid force color by id (if color components are parsed)
-c or --cfg [PATH] path to the config file auto detect in tree
-f or --frac [F] * fraction of points for downsampling
-r or --voxel-size [S] * voxel size for downsampling
-d or --downsample feed back downsample to the saved point cloud render only
-s or --save [PATH] path to .npy file do not save scene
-p or --make-parent create parent directories if needed (for --save)
--no-exe do not execute the app (if --save)
--only [(<=?N)|(N(-N)?)(,\s*N(-N)?)*] only parse some entries of the config file parse all entries
python pcv.py --cfg <custom_load>.json5 -vips out/point_cloud.npy -dr10 --only "<=2,4,9-11"

loads the json5 config file (but only with entries n°1,2,4,9,10,11), verbose mode, use id to color points, downsample to have 1 point each 10 units and save result into .npy file and create parent directory if needed

json5 model is as follow (note that only x, y and z are mandatory in "pattern", "pattern" and "skip_first_line" can be overwritten in "configs", and that only "file_path" is not set by default):

{
  "default": {
    "pattern": "{?},{x},{y},{z},{r},{g},{b},{id}",
    "skip_first_line": true
  },
  "configs": [
    {
      "file_path": "<path to file n°1>.csv",
      "source_xyz": [<x1>, <y1>, <z1>]
    },
    {
      "file_path": "<path to file n°2>.csv",
      "source_xyz": [<x2>, <y2>, <z2>]
    },
    ...
  ]
}

⚙️ Builds

curl https://github.com/ThomasByr/point-cloud-visualizer/archive/refs/tags/v0.3.5.zip
unzip point-cloud-visualizer-0.3.5.zip -d point-cloud-visualizer
cd point-cloud-visualizer
conda env create -f environment.yml
conda activate o3d
# or pip install -r requirements.txt

v0.3.0

14 Aug 14:06

Choose a tag to compare

First stable release ⚡

Please do not use anything between 0.1.4 and 0.2.2

🚀 Features

  • fast ndimentionnal point representation and loading (3 million points under 12s in txt format!)
  • preprocessing step included with numpy formats
  • support for python 3.8 to 3.10, minimal and fixed dependencies
argument hint default
-h or --help show help message and exit
-V or --version show program's version number and exit
-v or --verbose increase output verbosity
-i or --cbid force color by id (if color components are parsed)
-c or --cfg [PATH] path to the config file auto detect in tree
-f or --frac [F] fraction of points to render (does not affect saving) 1.0
-s or --save [PATH] path to .npy file do not save scene
-p or --make-parent create parent directories if needed (for --save)
--no-exe do not execute the app (if --save)
--only [(<=)?N{[,-]N}*] only parse some entries of the config file parse all entries
python pcv.py --cfg <custom_load>.json5 -vips out/point_cloud.npy --only "<=2,4,9-11"

loads the json5 config file (but only with entries n°1,2,4,9,10,11), verbose mode, use id to color points, save result into .npy file and create parent directory if needed (pcv.py mode is 744)

json5 model is as follow (note that only x, y and z are mandatory in "pattern", "pattern" and "skip_first_line" can be overwritten in "configs", and that only "file_path" is not set by default):

{
  "default": {
    "pattern": "{?},{x},{y},{z},{r},{g},{b},{id}",
    "skip_first_line": true
  },
  "configs": [
    {
      "file_path": "<path to file n°1>.csv",
      "source_xyz": [<x1>, <y1>, <z1>]
    },
    {
      "file_path": "<path to file n°2>.csv",
      "source_xyz": [<x2>, <y2>, <z2>]
    },
    ...
  ]
}

⚙️ Builds

curl https://github.com/ThomasByr/point-cloud-visualizer/archive/refs/tags/v0.3.0.zip
unzip point-cloud-visualizer-0.3.0.zip -d point-cloud-visualizer
cd point-cloud-visualizer
conda env create -f environment.yml
conda activate o3d
# or pip install -r requirements.txt