Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
140 changes: 72 additions & 68 deletions grassmann_tensor/tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -221,6 +221,20 @@ def _reorder_indices(
sign = (count & 2).to(dtype=torch.bool)
return len(even), len(odd), reorder, sign.flatten()

def _calculate_even_odd(self) -> tuple[int, int]:
return self.calculate_even_odd(self.edges)

@staticmethod
def calculate_even_odd(edges: tuple[tuple[int, int], ...]) -> tuple[int, int]:
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这两个函数有一个就行,不用封装得这么狠,再说,你这个函数也没用到上面那个函数。

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

好的,已经在607dfd8中提交了修改。

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个函数原则上可以被上面那个reorder_indices覆盖功能, 但是你在结果是(1, 0)的情况下, 希望做简单/快速的判断. 所以我建议: 直接写一个 is_xxx_valid 之类的函数, 或者直接判断 edges_only.count((0, 1)) % 2 == 0 .

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里这个函数后面开发会不会也有用?我在svd的测试中也用到了类似的函数,这里实现了后续可以直接调用。

return functools.reduce(
lambda accumulator, even_odd_pair: (
accumulator[0] * even_odd_pair[0] + accumulator[1] * even_odd_pair[1],
accumulator[0] * even_odd_pair[1] + accumulator[1] * even_odd_pair[0],
),
edges,
(1, 0),
)

def reshape(self, new_shape: tuple[int | tuple[int, int], ...]) -> GrassmannTensor:
"""
Reshape the Grassmann tensor, which may split or merge edges.
Expand Down Expand Up @@ -253,15 +267,38 @@ def reshape(self, new_shape: tuple[int | tuple[int, int], ...]) -> GrassmannTens
merging_reorder: list[tuple[int, torch.Tensor]] = []
merging_sign: list[tuple[int, torch.Tensor]] = []

original_self_is_scalar = self.tensor.dim() == 0
if original_self_is_scalar:
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

把这个判断放最外面挺好的,不过为啥只有original是scalar的判断,没有target是scalar的判断?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

放在外面确实好很多,现在已经在607dfd8把target判断放在了外面。代码复杂度和可读性大大提高了。

new_shape_list: list[tuple[int, int]] = []
for item in new_shape:
if item == -1:
raise AssertionError("Cannot use -1 when reshaping from a scalar")
if isinstance(item, int):
if item != 1:
raise AssertionError(
f"Ambiguous integer dim {item} from scalar. "
"Use explicit (even, odd) pairs, or only use 1 for trivial edges."
)
new_shape_list.append((1, 0))
else:
new_shape_list.append(item)
new_shape = tuple(new_shape_list)
edges_only = typing.cast(tuple[tuple[int, int], ...], new_shape)
assert self.calculate_even_odd(edges_only) == (1, 0), (
"Cannot split none edges into illegal edges"
)

if len(new_shape) == 0:
assert self._calculate_even_odd() == (1, 0), (
"Only pure even edges can be merged into none edges"
)
tensor = self.tensor.reshape(())
return GrassmannTensor(_arrow=(), _edges=(), _tensor=tensor)

cursor_plan: int = 0
cursor_self: int = 0
while cursor_plan != len(new_shape) or cursor_self != self.tensor.dim():
if len(new_shape) == 0:
assert all(edge == (0, 1) or edge == (1, 0) for edge in self.edges), (
f"Edge must be (0, 1) or (1, 0) but got {self.edges}"
)
cursor_self = self.tensor.dim() - 1
elif cursor_plan != len(new_shape) and new_shape[cursor_plan] == -1:
if cursor_plan != len(new_shape) and new_shape[cursor_plan] == -1:
# Does not change
arrow.append(self.arrow[cursor_self])
edges.append(self.edges[cursor_self])
Expand All @@ -280,20 +317,14 @@ def reshape(self, new_shape: tuple[int | tuple[int, int], ...]) -> GrassmannTens
# A trivial self edge
cursor_self += 1
continue
if len(new_shape) == 0:
cursor_new_shape = typing.cast(int | tuple[int, int], tuple())
total = 1
else:
cursor_new_shape = new_shape[cursor_plan]
total = (
cursor_new_shape
if isinstance(cursor_new_shape, int)
else cursor_new_shape[0] + cursor_new_shape[1]
)
cursor_new_shape = new_shape[cursor_plan]
total = (
cursor_new_shape
if isinstance(cursor_new_shape, int)
else cursor_new_shape[0] + cursor_new_shape[1]
)
# one of total and shape[cursor_self] is not trivial, otherwise it should be handled before
if self.tensor.dim() == 0:
merging = False
elif total == self.tensor.shape[cursor_self]:
if total == self.tensor.shape[cursor_self]:
# We do not know whether it is merging or splitting, check more
if isinstance(cursor_new_shape, int) or cursor_new_shape == self.edges[cursor_self]:
# If the new shape is exactly the same as the current edge, we treat it as no change
Expand All @@ -307,9 +338,6 @@ def reshape(self, new_shape: tuple[int | tuple[int, int], ...]) -> GrassmannTens
cursor_self_finding = cursor_self
cursor_self_found = False
while True:
if len(new_shape) == 0:
cursor_self_found = True
break
cursor_self_finding += 1
if cursor_self_finding == self.tensor.dim():
break
Expand All @@ -329,10 +357,6 @@ def reshape(self, new_shape: tuple[int | tuple[int, int], ...]) -> GrassmannTens
new_cursor_self = cursor_self
self_total = 1
while True:
if len(new_shape) == 0:
new_cursor_self += 1
even, odd, reorder, sign = self._reorder_indices(self.edges)
break
# Try to include more dimension from self
self_total *= self.tensor.shape[new_cursor_self]
new_cursor_self += 1
Expand All @@ -354,26 +378,19 @@ def reshape(self, new_shape: tuple[int | tuple[int, int], ...]) -> GrassmannTens
f"New shape exceeds in merging with edges {self.edges} and new shape {new_shape}."
)
# The merging block [cursor_self, new_cursor_self) has been determined
if len(new_shape) == 0:
arrow = []
edges = []
shape = []
merging_sign.append((cursor_plan, sign))
cursor_self = new_cursor_self
else:
arrow.append(self.arrow[cursor_self])
assert all(
self_arrow == arrow[-1]
for self_arrow in self.arrow[cursor_self:new_cursor_self]
), (
f"Cannot merge edges with different arrows {self.arrow[cursor_self:new_cursor_self]}."
)
edges.append((even, odd))
shape.append(total)
merging_sign.append((cursor_plan, sign))
merging_reorder.append((cursor_plan, reorder))
cursor_self = new_cursor_self
cursor_plan += 1
arrow.append(self.arrow[cursor_self])
assert all(
self_arrow == arrow[-1]
for self_arrow in self.arrow[cursor_self:new_cursor_self]
), (
f"Cannot merge edges with different arrows {self.arrow[cursor_self:new_cursor_self]}."
)
edges.append((even, odd))
shape.append(total)
merging_sign.append((cursor_plan, sign))
merging_reorder.append((cursor_plan, reorder))
cursor_self = new_cursor_self
cursor_plan += 1
else:
# Splitting between [cursor_plan, new_cursor_plan) and the another side contains dimension as plan_total
new_cursor_plan = cursor_plan
Expand All @@ -387,23 +404,16 @@ def reshape(self, new_shape: tuple[int | tuple[int, int], ...]) -> GrassmannTens
plan_total *= new_cursor_new_shape[0] + new_cursor_new_shape[1]
new_cursor_plan += 1
# One dimension included, check if we can stop
if self.tensor.dim() == 0:
if plan_total == self.tensor.shape[cursor_self]:
# new_shape block has been verified to be always tuple[int, int] before
even, odd, reorder, sign = self._reorder_indices(
typing.cast(tuple[tuple[int, int], ...], new_shape)
)
new_cursor_plan = len(new_shape)
break
else:
if plan_total == self.tensor.shape[cursor_self]:
# new_shape block has been verified to be always tuple[int, int] before
even, odd, reorder, sign = self._reorder_indices(
typing.cast(
tuple[tuple[int, int], ...],
new_shape[cursor_plan:new_cursor_plan],
)
typing.cast(
tuple[tuple[int, int], ...],
new_shape[cursor_plan:new_cursor_plan],
)
if (even, odd) == self.edges[cursor_self]:
break
)
if (even, odd) == self.edges[cursor_self]:
break
# For some reason we cannot stop here, continue to include more dimension, check something before continue
assert plan_total <= self.tensor.shape[cursor_self], (
f"Dimension mismatch in splitting with edges {self.edges} and new shape {new_shape}."
Expand All @@ -415,10 +425,7 @@ def reshape(self, new_shape: tuple[int | tuple[int, int], ...]) -> GrassmannTens
for i in range(cursor_plan, new_cursor_plan):
# new_shape block has been verified to be always tuple[int, int] in the loop
new_cursor_new_shape = typing.cast(tuple[int, int], new_shape[i])
if self.tensor.dim() == 0:
arrow.append(False)
else:
arrow.append(self.arrow[cursor_self])
arrow.append(self.arrow[cursor_self])
edges.append(new_cursor_new_shape)
shape.append(new_cursor_new_shape[0] + new_cursor_new_shape[1])
splitting_reorder.append((cursor_self, reorder))
Expand Down Expand Up @@ -447,9 +454,6 @@ def reshape(self, new_shape: tuple[int | tuple[int, int], ...]) -> GrassmannTens

tensor = tensor.reshape(shape)

if len(new_shape) == 0:
return GrassmannTensor(_arrow=tuple(arrow), _edges=tuple(edges), _tensor=tensor)

merging_parity = functools.reduce(
torch.logical_xor,
(
Expand Down
17 changes: 16 additions & 1 deletion tests/reshape_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -180,5 +180,20 @@ def test_reshape_equal_edges_nontrivial_merging_with_other_edge() -> None:
def test_reshape_with_none() -> None:
a = GrassmannTensor((), (), torch.tensor(2333)).reshape(((1, 0), (1, 0))).reshape(())
assert len(a.arrow) == 0 and len(a.edges) == 0 and a.tensor.dim() == 0
b = GrassmannTensor((), (), torch.tensor(2333)).reshape(((0, 1), (0, 1))).reshape(())
b = GrassmannTensor((), (), torch.tensor(2333)).reshape(((1, 0), (1, 0))).reshape(())
assert len(b.arrow) == 0 and len(b.edges) == 0 and b.tensor.dim() == 0
c = GrassmannTensor((), (), torch.tensor(2333)).reshape((1, 1))
assert len(c.arrow) == 2 and len(c.edges) == 2 and c.tensor.dim() == 2


def test_reshape_with_none_edge_assertion() -> None:
with pytest.raises(AssertionError, match="Only pure even edges can be merged into none edges"):
_ = GrassmannTensor((True, True), ((0, 1), (1, 0)), torch.tensor([[2333]])).reshape(())
with pytest.raises(AssertionError, match="Cannot split none edges into illegal edges"):
_ = GrassmannTensor((), (), torch.tensor(2333)).reshape(((0, 1),))
with pytest.raises(AssertionError, match="Cannot split none edges into illegal edges"):
_ = GrassmannTensor((), (), torch.tensor(2333)).reshape(((0, 1), (1, 0)))
with pytest.raises(AssertionError, match="Cannot use -1 when reshaping from a scalar"):
_ = GrassmannTensor((), (), torch.tensor(2333)).reshape((1, -1))
with pytest.raises(AssertionError, match="Ambiguous integer dim"):
_ = GrassmannTensor((), (), torch.tensor(2333)).reshape((2, 2))