Skip to content

Commit 970cf1a

Browse files
committed
Last commit before migration to UniMath
1 parent 621723a commit 970cf1a

File tree

2 files changed

+17
-17
lines changed

2 files changed

+17
-17
lines changed

Generalities/uu0.v

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -1486,26 +1486,26 @@ Definition weqbandf { X Y : UU } (w : weq X Y ) (P:X -> UU)(Q: Y -> UU)( fw : fo
14861486
(** *** Homotopy commutative squares *)
14871487

14881488

1489-
Definition commsqstr { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) := forall ( z : Z ) , paths ( f' ( g' z ) ) ( f ( g z ) ) .
1489+
Definition commsqstr { X X' Y Z : UU } ( g' : Z -> X' ) ( f' : X' -> Y ) ( g : Z -> X ) ( f : X -> Y ) := forall ( z : Z ) , paths ( f' ( g' z ) ) ( f ( g z ) ) .
14901490

14911491

1492-
Definition hfibersgtof' { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) ( h : commsqstr f f' g g' ) ( x : X ) ( ze : hfiber g x ) : hfiber f' ( f x ) .
1492+
Definition hfibersgtof' { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) ( h : commsqstr g' f' g f ) ( x : X ) ( ze : hfiber g x ) : hfiber f' ( f x ) .
14931493
Proof. intros . destruct ze as [ z e ] . split with ( g' z ) . apply ( pathscomp0 ( h z ) ( maponpaths f e ) ) . Defined .
14941494

1495-
Definition hfibersg'tof { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) ( h : commsqstr f f' g g' ) ( x' : X' ) ( ze : hfiber g' x' ) : hfiber f ( f' x' ) .
1495+
Definition hfibersg'tof { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) ( h : commsqstr g' f' g f ) ( x' : X' ) ( ze : hfiber g' x' ) : hfiber f ( f' x' ) .
14961496
Proof. intros . destruct ze as [ z e ] . split with ( g z ) . apply ( pathscomp0 ( pathsinv0 ( h z ) ) ( maponpaths f' e ) ) . Defined .
14971497

14981498

1499-
Definition transposcommsqstr { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) : commsqstr f f' g g' -> commsqstr f' f g' g := fun h : _ => fun z : Z => ( pathsinv0 ( h z ) ) .
1499+
Definition transposcommsqstr { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) : commsqstr g' f' g f -> commsqstr g f g' f' := fun h : _ => fun z : Z => ( pathsinv0 ( h z ) ) .
15001500

15011501

15021502
(** *** Short complexes and homotopy commutative squares *)
15031503

1504-
Lemma complxstrtocommsqstr { X Y Z : UU } ( f : X -> Y ) ( g : Y -> Z ) ( z : Z ) ( h : complxstr f g z ) : commsqstr ( fun t : unit => z ) g ( fun x : X => tt ) f .
1504+
Lemma complxstrtocommsqstr { X Y Z : UU } ( f : X -> Y ) ( g : Y -> Z ) ( z : Z ) ( h : complxstr f g z ) : commsqstr f g ( fun x : X => tt ) ( fun t : unit => z ) .
15051505
Proof. intros . assumption . Defined .
15061506

15071507

1508-
Lemma commsqstrtocomplxstr { X Y Z : UU } ( f : X -> Y ) ( g : Y -> Z ) ( z : Z ) ( h : commsqstr ( fun t : unit => z ) g ( fun x : X => tt ) f ) : complxstr f g z .
1508+
Lemma commsqstrtocomplxstr { X Y Z : UU } ( f : X -> Y ) ( g : Y -> Z ) ( z : Z ) ( h : commsqstr f g ( fun x : X => tt ) ( fun t : unit => z ) ) : complxstr f g z .
15091509
Proof. intros . assumption . Defined .
15101510

15111511

@@ -1517,11 +1517,11 @@ Definition hfp {X X' Y:UU} (f:X -> Y) (f':X' -> Y):= total2 (fun xx' : dirprod X
15171517
Definition hfpg {X X' Y:UU} (f:X -> Y) (f':X' -> Y) : hfp f f' -> X := fun xx'e => ( pr1 ( pr1 xx'e ) ) .
15181518
Definition hfpg' {X X' Y:UU} (f:X -> Y) (f':X' -> Y) : hfp f f' -> X' := fun xx'e => ( pr2 ( pr1 xx'e ) ) .
15191519

1520-
Definition commsqZtohfp { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) ( h : commsqstr f f' g g' ) : Z -> hfp f f' := fun z : _ => tpair _ ( dirprodpair ( g z ) ( g' z ) ) ( h z ) .
1520+
Definition commsqZtohfp { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) ( h : commsqstr g' f' g f ) : Z -> hfp f f' := fun z : _ => tpair _ ( dirprodpair ( g z ) ( g' z ) ) ( h z ) .
15211521

1522-
Definition commsqZtohfphomot { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) ( h : commsqstr f f' g g' ) : forall z : Z , paths ( hfpg _ _ ( commsqZtohfp _ _ _ _ h z ) ) ( g z ) := fun z : _ => idpath _ .
1522+
Definition commsqZtohfphomot { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) ( h : commsqstr g' f' g f ) : forall z : Z , paths ( hfpg _ _ ( commsqZtohfp _ _ _ _ h z ) ) ( g z ) := fun z : _ => idpath _ .
15231523

1524-
Definition commsqZtohfphomot' { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) ( h : commsqstr f f' g g' ) : forall z : Z , paths ( hfpg' _ _ ( commsqZtohfp _ _ _ _ h z ) ) ( g' z ) := fun z : _ => idpath _ .
1524+
Definition commsqZtohfphomot' { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) ( h : commsqstr g' f' g f ) : forall z : Z , paths ( hfpg' _ _ ( commsqZtohfp _ _ _ _ h z ) ) ( g' z ) := fun z : _ => idpath _ .
15251525

15261526

15271527
Definition hfpoverX {X X' Y:UU} (f:X -> Y) (f':X' -> Y) := total2 (fun x : X => hfiber f' ( f x ) ) .
@@ -1541,7 +1541,7 @@ Lemma weqhfpcomm { X X' Y : UU } ( f : X -> Y ) ( f' : X' -> Y ) : weq ( hfp f f
15411541
Proof . intros . set ( w1 := weqfp ( weqdirprodcomm X X' ) ( fun xx' : dirprod X' X => paths ( f' ( pr1 xx' ) ) ( f ( pr2 xx' ) ) ) ) . simpl in w1 . set ( w2 := weqfibtototal ( fun x'x : dirprod X' X => paths ( f' ( pr1 x'x ) ) ( f ( pr2 x'x ) ) ) ( fun x'x : dirprod X' X => paths ( f ( pr2 x'x ) ) ( f' ( pr1 x'x ) ) ) ( fun x'x : _ => weqpathsinv0 ( f' ( pr1 x'x ) ) ( f ( pr2 x'x ) ) ) ) . apply ( weqcomp w1 w2 ) . Defined .
15421542

15431543

1544-
Definition commhfp {X X' Y:UU} (f:X -> Y) (f':X' -> Y) : commsqstr f f' ( hfpg f f' ) ( hfpg' f f' ) := fun xx'e : hfp f f' => pr2 xx'e .
1544+
Definition commhfp {X X' Y:UU} (f:X -> Y) (f':X' -> Y) : commsqstr ( hfpg' f f' ) f' ( hfpg f f' ) f := fun xx'e : hfp f f' => pr2 xx'e .
15451545

15461546

15471547
(** *** Homotopy fiber products and homotopy fibers *)
@@ -1565,11 +1565,11 @@ apply ( gradth _ _ egf efg ) . Defined .
15651565
(** *** Homotopy fiber squares *)
15661566

15671567

1568-
Definition ishfsq { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) ( h : commsqstr f f' g g' ) := isweq ( commsqZtohfp f f' g g' h ) .
1568+
Definition ishfsq { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) ( h : commsqstr g' f' g f ) := isweq ( commsqZtohfp f f' g g' h ) .
15691569

1570-
Definition hfsqstr { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) := total2 ( fun h : commsqstr f f' g g' => isweq ( commsqZtohfp f f' g g' h ) ) .
1571-
Definition hfsqstrpair { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) := tpair ( fun h : commsqstr f f' g g' => isweq ( commsqZtohfp f f' g g' h ) ) .
1572-
Definition hfsqstrtocommsqstr { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) : hfsqstr f f' g g' -> commsqstr f f' g g' := @pr1 _ ( fun h : commsqstr f f' g g' => isweq ( commsqZtohfp f f' g g' h ) ) .
1570+
Definition hfsqstr { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) := total2 ( fun h : commsqstr g' f' g f => isweq ( commsqZtohfp f f' g g' h ) ) .
1571+
Definition hfsqstrpair { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) := tpair ( fun h : commsqstr g' f' g f => isweq ( commsqZtohfp f f' g g' h ) ) .
1572+
Definition hfsqstrtocommsqstr { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) : hfsqstr f f' g g' -> commsqstr g' f' g f := @pr1 _ ( fun h : commsqstr g' f' g f => isweq ( commsqZtohfp f f' g g' h ) ) .
15731573
Coercion hfsqstrtocommsqstr : hfsqstr >-> commsqstr .
15741574

15751575
Definition weqZtohfp { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) ( hf : hfsqstr f f' g g' ) : weq Z ( hfp f f' ) := weqpair _ ( pr2 hf ) .
@@ -1583,7 +1583,7 @@ assert ( is2 : isweq b0 ) . apply ( twooutof3b _ _ ( pr2 a ) is1 ) . apply ( is
15831583

15841584
Definition weqhfibersgtof' { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) ( hf : hfsqstr f f' g g' ) ( x : X ) := weqpair _ ( isweqhfibersgtof' _ _ _ _ hf x ) .
15851585

1586-
Lemma ishfsqweqhfibersgtof' { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) ( h : commsqstr f f' g g' ) ( is : forall x : X , isweq ( hfibersgtof' f f' g g' h x ) ) : hfsqstr f f' g g' .
1586+
Lemma ishfsqweqhfibersgtof' { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) ( h : commsqstr g' f' g f ) ( is : forall x : X , isweq ( hfibersgtof' f f' g g' h x ) ) : hfsqstr f f' g g' .
15871587
Proof . intros . split with h .
15881588
set ( a := weqtococonusf g ) . set ( c0 := commsqZtohfp f f' g g' h ) . set ( d := weqhfptohfpoverX f f' ) . set ( b := weqfibtototal _ _ ( fun x : X => weqpair _ ( is x ) ) ) .
15891589
assert ( h1 : forall z : Z , paths ( d ( c0 z ) ) ( b ( a z ) ) ) . intro . simpl . unfold b . unfold a . unfold weqtococonusf . unfold tococonusf . simpl . unfold totalfun . simpl . assert ( e : paths ( h z ) ( pathscomp0 (h z) (idpath (f (g z))) ) ) . apply ( pathsinv0 ( pathscomp0rid _ ) ) . destruct e . apply idpath .
@@ -1600,7 +1600,7 @@ assert ( is2 : isweq b0' ) . apply ( twooutof3b _ _ ( pr2 a' ) is1 ) . apply (
16001600

16011601
Definition weqhfibersg'tof { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) ( hf : hfsqstr f f' g g' ) ( x' : X' ) := weqpair _ ( isweqhfibersg'tof _ _ _ _ hf x' ) .
16021602

1603-
Lemma ishfsqweqhfibersg'tof { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) ( h : commsqstr f f' g g' ) ( is : forall x' : X' , isweq ( hfibersg'tof f f' g g' h x' ) ) : hfsqstr f f' g g' .
1603+
Lemma ishfsqweqhfibersg'tof { X X' Y Z : UU } ( f : X -> Y ) ( f' : X' -> Y ) ( g : Z -> X ) ( g' : Z -> X' ) ( h : commsqstr g' f' g f ) ( is : forall x' : X' , isweq ( hfibersg'tof f f' g g' h x' ) ) : hfsqstr f f' g g' .
16041604
Proof . intros . split with h .
16051605
set ( a' := weqtococonusf g' ) . set ( c0' := commsqZtohfp f f' g g' h ) . set ( d' := weqhfptohfpoverX' f f' ) . set ( b' := weqfibtototal _ _ ( fun x' : X' => weqpair _ ( is x' ) ) ) .
16061606
assert ( h1 : forall z : Z , paths ( d' ( c0' z ) ) ( b' ( a' z ) ) ) . intro . simpl . unfold b' . unfold a' . unfold weqtococonusf . unfold tococonusf . unfold totalfun . simpl . assert ( e : paths ( pathsinv0 ( h z ) ) ( pathscomp0 ( pathsinv0 (h z) ) (idpath (f' (g' z))) ) ) . apply ( pathsinv0 ( pathscomp0rid _ ) ) . destruct e . apply idpath .

hlevel2/stnfsets.v

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -83,7 +83,7 @@ Definition stnmtostnn ( m n : nat ) (isnatleh: natleh m n ) : stn m -> stn n :=
8383
Definition dni ( n : nat ) ( i : stn ( S n ) ) : stn n -> stn ( S n ) .
8484
Proof. intros n i x . destruct ( natlthorgeh x i ) . apply ( stnpair ( S n ) x ( natgthtogths _ _ ( pr2 x ) ) ) . apply ( stnpair ( S n ) ( S x ) ( pr2 x ) ) . Defined.
8585

86-
Lemma dnicommsq ( n : nat ) ( i : stn ( S n ) ) : commsqstr ( di i ) ( stntonat ( S n ) ) ( stntonat n ) ( dni n i ) .
86+
Lemma dnicommsq ( n : nat ) ( i : stn ( S n ) ) : commsqstr( dni n i ) ( stntonat ( S n ) ) ( stntonat n ) ( di i ) .
8787
Proof. intros . intro x . unfold dni . unfold di . destruct ( natlthorgeh x i ) . simpl . apply idpath . simpl . apply idpath . Defined .
8888

8989
Theorem dnihfsq ( n : nat ) ( i : stn ( S n ) ) : hfsqstr ( di i ) ( stntonat ( S n ) ) ( stntonat n ) ( dni n i ) .

0 commit comments

Comments
 (0)