Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 28 additions & 18 deletions ml-agents/mlagents/trainers/policy/torch_policy.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from typing import Any, Dict, List
from typing import Any, Dict, List, Tuple, Optional
import numpy as np
import torch

Expand Down Expand Up @@ -85,7 +85,9 @@ def __init__(

self.actor_critic.to(TestingConfiguration.device)

def split_decision_step(self, decision_requests):
def _split_decision_step(
self, decision_requests: DecisionSteps
) -> Tuple[SplitObservations, np.ndarray]:
vec_vis_obs = SplitObservations.from_observations(decision_requests.obs)
mask = None
if not self.use_continuous_act:
Expand All @@ -94,7 +96,7 @@ def split_decision_step(self, decision_requests):
mask = torch.as_tensor(
1 - np.concatenate(decision_requests.action_mask, axis=1)
)
return vec_vis_obs.vector_observations, vec_vis_obs.visual_observations, mask
return vec_vis_obs, mask

def update_normalization(self, vector_obs: np.ndarray) -> None:
"""
Expand All @@ -108,13 +110,15 @@ def update_normalization(self, vector_obs: np.ndarray) -> None:
@timed
def sample_actions(
self,
vec_obs,
vis_obs,
masks=None,
memories=None,
seq_len=1,
all_log_probs=False,
):
vec_obs: List[torch.Tensor],
vis_obs: List[torch.Tensor],
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
seq_len: int = 1,
all_log_probs: bool = False,
) -> Tuple[
torch.Tensor, torch.Tensor, torch.Tensor, Dict[str, torch.Tensor], torch.Tensor
]:
"""
:param all_log_probs: Returns (for discrete actions) a tensor of log probs, one for each action.
"""
Expand All @@ -140,14 +144,18 @@ def sample_actions(
)

def evaluate_actions(
self, vec_obs, vis_obs, actions, masks=None, memories=None, seq_len=1
):
self,
vec_obs: torch.Tensor,
vis_obs: torch.Tensor,
actions: torch.Tensor,
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
seq_len: int = 1,
) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, torch.Tensor]]:
dists, value_heads, _ = self.actor_critic.get_dist_and_value(
vec_obs, vis_obs, masks, memories, seq_len
)
if len(actions.shape) <= 2:
actions = actions.unsqueeze(-1)
action_list = [actions[..., i] for i in range(actions.shape[2])]
action_list = [actions[..., i] for i in range(actions.shape[-1])]
log_probs, entropies, _ = ModelUtils.get_probs_and_entropy(action_list, dists)

return log_probs, entropies, value_heads
Expand All @@ -162,9 +170,11 @@ def evaluate(
:param decision_requests: DecisionStep object containing inputs.
:return: Outputs from network as defined by self.inference_dict.
"""
vec_obs, vis_obs, masks = self.split_decision_step(decision_requests)
vec_obs = [torch.as_tensor(vec_obs)]
vis_obs = [torch.as_tensor(vis_ob) for vis_ob in vis_obs]
vec_vis_obs, masks = self._split_decision_step(decision_requests)
vec_obs = [torch.as_tensor(vec_vis_obs.vector_observations)]
vis_obs = [
torch.as_tensor(vis_ob) for vis_ob in vec_vis_obs.visual_observations
]
memories = torch.as_tensor(self.retrieve_memories(global_agent_ids)).unsqueeze(
0
)
Expand Down
150 changes: 150 additions & 0 deletions ml-agents/mlagents/trainers/tests/torch/test_policy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
import pytest

import torch
from mlagents.trainers.policy.torch_policy import TorchPolicy
from mlagents.trainers.tests import mock_brain as mb
from mlagents.trainers.settings import TrainerSettings, NetworkSettings
from mlagents.trainers.torch.utils import ModelUtils

VECTOR_ACTION_SPACE = 2
VECTOR_OBS_SPACE = 8
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
BUFFER_INIT_SAMPLES = 32
NUM_AGENTS = 12
EPSILON = 1e-7


def create_policy_mock(
dummy_config: TrainerSettings,
use_rnn: bool = False,
use_discrete: bool = True,
use_visual: bool = False,
seed: int = 0,
) -> TorchPolicy:
mock_spec = mb.setup_test_behavior_specs(
use_discrete,
use_visual,
vector_action_space=DISCRETE_ACTION_SPACE
if use_discrete
else VECTOR_ACTION_SPACE,
vector_obs_space=VECTOR_OBS_SPACE,
)

trainer_settings = dummy_config
trainer_settings.keep_checkpoints = 3
trainer_settings.network_settings.memory = (
NetworkSettings.MemorySettings() if use_rnn else None
)
policy = TorchPolicy(seed, mock_spec, trainer_settings)
return policy


@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
def test_policy_evaluate(rnn, visual, discrete):
# Test evaluate
policy = create_policy_mock(
TrainerSettings(), use_rnn=rnn, use_discrete=discrete, use_visual=visual
)
decision_step, terminal_step = mb.create_steps_from_behavior_spec(
policy.behavior_spec, num_agents=NUM_AGENTS
)

run_out = policy.evaluate(decision_step, list(decision_step.agent_id))
if discrete:
run_out["action"].shape == (NUM_AGENTS, len(DISCRETE_ACTION_SPACE))
else:
assert run_out["action"].shape == (NUM_AGENTS, VECTOR_ACTION_SPACE)


@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
def test_evaluate_actions(rnn, visual, discrete):
policy = create_policy_mock(
TrainerSettings(), use_rnn=rnn, use_discrete=discrete, use_visual=visual
)
buffer = mb.simulate_rollout(64, policy.behavior_spec, memory_size=policy.m_size)
vec_obs = [ModelUtils.list_to_tensor(buffer["vector_obs"])]
act_masks = ModelUtils.list_to_tensor(buffer["action_mask"])
if policy.use_continuous_act:
actions = ModelUtils.list_to_tensor(buffer["actions"]).unsqueeze(-1)
else:
actions = ModelUtils.list_to_tensor(buffer["actions"], dtype=torch.long)
vis_obs = []
for idx, _ in enumerate(policy.actor_critic.network_body.visual_encoders):
vis_ob = ModelUtils.list_to_tensor(buffer["visual_obs%d" % idx])
vis_obs.append(vis_ob)

memories = [
ModelUtils.list_to_tensor(buffer["memory"][i])
for i in range(0, len(buffer["memory"]), policy.sequence_length)
]
if len(memories) > 0:
memories = torch.stack(memories).unsqueeze(0)

log_probs, entropy, values = policy.evaluate_actions(
vec_obs,
vis_obs,
masks=act_masks,
actions=actions,
memories=memories,
seq_len=policy.sequence_length,
)
assert log_probs.shape == (64, policy.behavior_spec.action_size)
assert entropy.shape == (64, policy.behavior_spec.action_size)
for val in values.values():
assert val.shape == (64,)


@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
def test_sample_actions(rnn, visual, discrete):
policy = create_policy_mock(
TrainerSettings(), use_rnn=rnn, use_discrete=discrete, use_visual=visual
)
buffer = mb.simulate_rollout(64, policy.behavior_spec, memory_size=policy.m_size)
vec_obs = [ModelUtils.list_to_tensor(buffer["vector_obs"])]
act_masks = ModelUtils.list_to_tensor(buffer["action_mask"])

vis_obs = []
for idx, _ in enumerate(policy.actor_critic.network_body.visual_encoders):
vis_ob = ModelUtils.list_to_tensor(buffer["visual_obs%d" % idx])
vis_obs.append(vis_ob)

memories = [
ModelUtils.list_to_tensor(buffer["memory"][i])
for i in range(0, len(buffer["memory"]), policy.sequence_length)
]
if len(memories) > 0:
memories = torch.stack(memories).unsqueeze(0)

(
sampled_actions,
log_probs,
entropies,
sampled_values,
memories,
) = policy.sample_actions(
vec_obs,
vis_obs,
masks=act_masks,
memories=memories,
seq_len=policy.sequence_length,
all_log_probs=not policy.use_continuous_act,
)
if discrete:
assert log_probs.shape == (
64,
sum(policy.behavior_spec.discrete_action_branches),
)
else:
assert log_probs.shape == (64, policy.behavior_spec.action_shape)
assert entropies.shape == (64, policy.behavior_spec.action_size)
for val in sampled_values.values():
assert val.shape == (64,)

if rnn:
assert memories.shape == (1, 1, policy.m_size)