A novel deep learning approach for time series clustering that combines Variational Mode Decomposition (VMD) with LSTM Autoencoders for temporal multi-features representation learning and enhanced clustering performance.
📄 Paper: IEEE Xplore - Temporal Multi-features Representation Learning-Based Clustering for Time-Series Data
The TMRC model consists of three main components:
- VMD Decomposition: Breaks down the input time series into K temporal features (intrinsic mode functions)
- LSTM Autoencoders: Multiple autoencoders learn representations from each temporal feature independently
- Multi-features Fusion & Clustering: Concatenates learned representations and performs TimeSeriesKMeans clustering
The TMRC approach enables learning of complementary temporal features at different frequency scales, providing richer representations for more accurate time series clustering.
- Temporal multi-features decomposition: TMRC decomposes time series into multiple temporal features using VMD
- Deep representation learning: Employs LSTM Autoencoders to learn meaningful representations from each temporal feature
- Multi-features fusion: Combines learned representations from all temporal features for comprehensive clustering
- Advanced time series clustering: Performs clustering using TimeSeriesKMeans on fused multi-features representations
- Comprehensive evaluation: Uses Rand Index and Normalized Mutual Information metrics
- Automated grid search: Tests multiple hyperparameter combinations automatically
- UCR/UEA dataset support: Compatible with standard time series benchmarks
-
Run all 36 datasets (full grid search):
run_experiments.bat
-
Quick test (single run per dataset):
run_quick_test.bat
-
Single dataset experiment:
run_single_dataset.bat ECG200
Basic usage:
python main.py --dataset ECG200 --device cudaGrid search:
python main.py --dataset ECG200 \
--K_list 2 3 4 5 6 \
--hidden_size_list 10 50 100 400 800 \
--num_epochs 1001 \
--output_dir resultsThe scripts are configured to run on these 36 UCR datasets:
ArrowHead, Beef, BeetleFly, BirdChicken, Car, ChlorineConcentration,
Coffee, DiatomsizeReduction, Dist.phal.outl.agegroup,
Dist.phal.outl.correct, ECG200, ECGFiveDays, GunPoint, Ham,
Herring, Lighting2, Meat, Mid.phal.outl.agegroup,
Mid.phal.outl.correct, Mid.phal.TW, MoteStrain, OSULeaf,
Plane, Prox.phal.outl.ageGroup, Prox.phal.TW, SonyAIBORobotSurface,
SonyAIBORobotSurfaceII, SwedishLeaf, Symbols, ToeSegmentation1,
ToeSegmentation2, TwoLeadECG, TwoPatterns, Wafer, Wine, WordsSynonyms
--dataset: Dataset name from UCR/UEA archive (default: 'GunPoint')--data_dir: Path to dataset directory (default: 'datasets/UCR')--dataset_list: CSV file containing list of datasets to run
--K_list: List of VMD decomposition modes (default: [2,3,4,5,6])--hidden_size_list: List of LSTM hidden sizes (default: [10,50,100,400,800,1200,1600,2000])--num_epochs: Number of training epochs (default: 1001)--lr: Learning rate (default: 0.0002)--num_layers: Number of LSTM layers (default: 1)
--vmd_alpha: VMD bandwidth constraint (default: 2000)--vmd_tau: VMD noise-tolerance (default: 0.0)--vmd_tol: VMD convergence tolerance (default: 1e-7)
--output_dir: Directory to save results (default: 'results')--device: Device to use ('cuda' or 'cpu')--seed: Random seed for reproducibility (default: 42)--verbose: Print detailed progress--single_run: Run single experiment instead of grid search
If you use TMRC in your research, please cite our paper:
@article{lee2024temporal,
title={Temporal multi-features representation learning-based clustering for time-series data},
author={Lee, Jaehoon and Kim, Dohee and Sim, Sunghyun},
journal={IEEE Access},
volume={12},
pages={87675--87690},
year={2024},
publisher={IEEE},
doi={10.1109/ACCESS.2024.3417888},
url={https://ieeexplore.ieee.org/abstract/document/10565866}
}This project is licensed under the MIT License - see the LICENSE file for details.
Contributions are welcome! Please feel free to submit a Pull Request.
For questions or issues, please open an issue on GitHub or contact [dynamic97312@naver.com].
Keywords: Time Series Clustering, Deep Learning, LSTM Autoencoders, Variational Mode Decomposition, Temporal Features, Multi-scale Analysis
