Skip to content

Wchang122/Multi-view-datasets

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-view Datasets

1. Usage

All dataset files contain two attributes, X and y.

  • X is the multi-view data as a cell, each element in this cell is an N-by-D matrix Xk, where N is the number of data points and D is the feature dimensions. So rows of Xk correspond to data points.
  • y is the vector of ground-truth labels.

Note: Due to Github's limitation on file size, files larger than 20MB will be stored in other repositories

  1. Baidu, code:yeog
  2. Google

2. Dataset Details

Dataset Instances Clusters Views(dimension) Description Type
3Sources 169 6 Reuters(3068), BBC(3560), Guardian(3631) A new multi-view text dataset collected from three well-known online news sources: BBC, Reuters,and The Guardian [14]. Text
100Leaves 1600 100 SD(64), FSM(64), TH(64) Sixteen samples of leaf each of one-hundred plant species [16]. Image
ACM 3025 3 View1(1870), View2(3025), View2(3025), View2(3025), View2(3025) The dataset extracts papers published in KDD, SIGMOD, SIGCOMM, MobiCOMM, and VLDB.
ALOI-1k 110250 1000 CS(77), Haralick(13), HSV(64), RGB(125) The Amsterdam Library of Object Images is a collection of 110250 images of 1000 small objects, taken under various light conditions and rotation angles [25]. Object
ALOI 10800 100 CS(77), Haralick(13), HSV(64), RGB(125) A subset of ALOI-1k [25]. Object
Animal 11673 20 View1(2688), View2(2000), View3(2001), View4(2000), A selected set of the Animals with Attributes dataset [12]. Animal
BBCSport 544 5 View1(3183), View2(3203) This document dataset contains 544 documents from the BBC Sport website, and they are aboutthe sports news between 2004 and 2005 [4]. Text
BBC4view 685 5 View1(4659), View2(4633), View3(4665), View4(4684) Similar to BBCSport, this dataset consists of 685 documents from the BBC Sport website about sports news [4]. Text
COIL20 1440 20 Intensity(1024), LBP(944), Gabor(4096) It is the abbreviation of the Columbia object image library dataset [24]. Object
Caltech101-7 1474 7 GABOR(48), WM(40), CENT(254), HOG(1984), GIST(512), LBP(928) This dataset contains 1474 images belonging to seven classes, which are faces, motorbikes, dollar bill, Garfield, stop sign, and windsor chair [4]. Object
Caltech101-20 2386 20 GABOR(48), WM(40), CENT(254), HOG(1984), GIST(512), LBP(928) This is the frequently used subsets of Caltech101 consisting of 20 categories of images built for object recognition tasks [5]. Object
Caltech101-all 9144 102 GABOR(48), WM(40), CENT(254), HOG(1984), GIST(512), LBP(928) The Caltech101 dataset contains images from 101 object categories and background (e.g., “helicopter”, “elephant” and “chair” etc.) and a background category that contains the images not from the 101 object categories [8]. Object
CiteSeer 3312 6 Content(3703), Cites(4732) The archive contains 3312 documents over the 6 labels (Agents,IR,DB,AI,HCI,ML) [13]. Text
Cora 2708 7 Content(1433), Inbound(2708), Outbound(2708), Cites(2708) The archive contains 2708 documents over the 7 labels (Neural_Networks, Rule_Learning, Reinforcement_Learning, Probabilistic_Methods, Theory, Genetic_Algorithms,Case_Based) [13]. Text
Handwritten 2000 10 FOU(76), FAC(216), KAR(64), PIX(240), ZER(47), MOR(6) This dataset consists of features of handwritten numerals ('0'--'9') extracted from a collection of Dutch utility maps [7]. Image
MNIST-10k 10000 10 ISO(30), LDA(9), NPE(30) A freely available and well-known handwritten database for image recognition consisting of four categories from digit 0 to digit 9, and each category has 1,000 samples evenly [1]. Handwritten
MNIST-4 4000 4 ISO(30), LDA(9), NPE(30) MNIST-4 is a subset of MNIST-10k consisting of four categories from digit 0 to digit 3 [5]. Handwritten
Movies 617 17 Keywords(1878), Actors(1398) It is a movie corpus extracted from IMDb. [22] Text
MSRC-v5 210 7 CM(24), HOG(576), GIST(512), LBP(256), CENT(254) A subset of the Microsoft Research in Cambridge dataset [21]. Image
NUS-WIDE-OBJ 30000 31 CH(65), CM(226), CORR(145), EDH(74), WT(129) It is a dataset for object recognition which consists of 30000 images in 31 classes[9]. Image
NUS-WIDE 2400 12 CH(64), CORR(144), EDH(75), WT(128), CM55(225) 12 categories of animal images selected from the NUS-WIDE-OBJ dataset, and the first 200 images are selected for each category [3]. Object
ORL 400 40 View1(4096), View2(3304), View3(6750) Face dataset contains 400 images of 40 distinct subjects. For each category, images were taken at different times, lights, facial expressions (open / closed eyes, smiling or not) and facial details (with glasses / without glasses) [23] . Face
OutdoorScene 2688 8 GIST(512), HOG(432), LBP(256), Gabor(48) The dataset has 2688 outdoor scene images consisting of 8 groups [13]. Object
ProteinFold 694 27 View1(27), View2(27), View3(27), View4(27), View5(27), View6(27), View7(27), View8(27), View9(27), View10(27), View11(27), View12(27) Multiply kernel learning dataset on protein fold prediction [19]. Protein
Prokaryotic 551 4 gene-repert(393), proteome-comp(3), Text(438) It contains prokaryotic species described with heterogeneous multi-view data including textual data and different genomic representations.[20] Genome
Reuters-1200 1200 6 English(2000), French(2000), German(2000), Spanish(2000), Italian(2000) It contains 6 samples of 1200 documents over 6 labels, and desribed by 5 views of 2000 words each [15]. Text
Reuters-1500 1500 6 English(21531), French(24893), German(34279), Spanish(15506), Italian(11547) The dataset is collection of 1500 documents which are expressed in five different languages (Italian, Spanish, French, German and English) and the corresponding translations [14]. Text
Reuters 18758 6 English(21531), French(24893), German (34279), Spanish (15506), Italian(11547) This dataset consists of documents that are written in five different languages and their translations[9]. Text
UCI 2000 10 Intensity(240), FOU(76), MOR(6) Obtained from the UCI machine learning repository, this dataset consists of 2000 handwritten digit images belonging to 10 digits with each digit containing 200 samples [4]. Handwritten
WebKB 1051 2 Anchor(1,840), Content(3,000) The dataset for web pages collected from computer science department web sites at four universities: Cornell University, University of Washington,University of Wisconsin, and University of Texas [6]. Text
Wikipedia 2866 10 Word(128), SIFT(10) Wikipedia dataset is the most widely-used dataset for cross-media retrieval. It is based on Wikipedia’s "featured articles", a continually updated article collection [11]. Text
Wikipedia-test 693 10 Word(128), SIFT(10) The test set of the Wikipedia collection [10]. Text
Yale 165 15 Intensity(4096), LBP(3304), Gabor(6750) This dataset consists of 165 gray-scale face images belonging to 15 subjects with each subject containing 11 images [4]. Face

List of features

  • FOU: Fourier coefficients of the character shapes
  • FAC: Profile correlations
  • PIX: Pixel averages in 2 × 3 windows
  • ZER: Zernike moment
  • MOR: Morphological features.
  • Gabor: Gabor feature
  • WM: Wavelet moments
  • CENT: CENTRIST feature [17]
  • HOG: Histogram of oriented gradients feature
  • GIST: GIST feature [18]
  • LBP: Local binary patterns feature
  • CH: Color Histogram
  • TH: Texture Histogram
  • CM: Color moments
  • CS: Color similiarity
  • CORR: Color correlation
  • EDH: Edge distribution
  • WT: Wavelet texture
  • SD: Shape descriptor
  • FSM: Fine scale margin
  • SIFT: Scale Invariant Feature Transform

References

[1] L. Deng, “The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web],” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, Jan. 2012, doi: 10.1109/MSP.2012.2211477.

[2] J. Winn and N. Jojic, “LOCUS: learning object classes with unsupervised segmentation,” in Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, Oct. 2005, pp. 756-763 Vol. 1. doi: 10.1109/ICCV.2005.148.

[3] B. Wang, Y. Xiao, Z. Li, X. Wang, X. Chen, and D. Fang, “Robust Self-Weighted Multi-View Projection Clustering,” in Proc. AAAI Conf. Artif. Intell., Apr. 2020, pp. 6110–6117. doi: 10.1609/aaai.v34i04.6075.

[4] M.-S. Chen, C.-D. Wang, and J.-H. Lai, “Low-rank Tensor Based Proximity Learning for Multi-view Clustering,” IEEE Transactions on Knowledge and Data Engineering, pp. 1–1, Jan. 2022, doi: 10.1109/TKDE.2022.3151861.

[5] X. Li, H. Zhang, R. Wang, and F. Nie, “Multiview Clustering: A Scalable and Parameter-Free Bipartite Graph Fusion Method,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 1, pp. 330–344, Jan. 2022, doi: 10.1109/TPAMI.2020.3011148.

[6] Q. Qiang, B. Zhang, F. Wang, and F. Nie, “Fast Multi-view Discrete Clustering with Anchor Graphs,” in Proc. AAAI Conf. Artif. Intell., May 2021, pp. 9360–9367. doi: 10.1609/aaai.v35i11.17128.

[7] F. Nie, L. Tian, and X. Li, “Multiview clustering via adaptively weighted procrustes,” in Proc. ACM Int. Conf. Knowl. Discov. Data Min., 2018, pp. 2022–2030. doi: 10.1145/3219819.3220049.

[8] Z. Zhang, L. Liu, F. Shen, H. T. Shen, and L. Shao, “Binary Multi-View Clustering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 7, pp. 1774–1782, Jul. 2019, doi: 10.1109/TPAMI.2018.2847335.

[9] Y. Li, F. Nie, H. Huang, and J. Huang, “Large-scale multi-view spectral clustering via bipartite graph,” in Proc. AAAI Conf. Artif. Intell., 2015. doi: 10.1609/aaai.v29i1.9598.

[10] S. Shi, F. Nie, R. Wang, and X. Li, “Fast Multi-View Clustering via Prototype Graph,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 1, pp. 443–455, Jan. 2023, doi: 10.1109/TKDE.2021.3078728.

[11] N. Rasiwasia et al., “A new approach to cross-modal multimedia retrieval,” in Proc. ACM Int. Conf. Multimedia, 2010, pp. 251–260. doi: 10.1145/1873951.1873987.

[12] C. H. Lampert, H. Nickisch, and S. Harmeling, “Learning to detect unseen object classes by between-class attribute transfer,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 951–958. doi: 10.1109/CVPR.2009.5206594.

[13] S.-G. Fang, D. Huang, X.-S. Cai, C.-D. Wang, C. He, and Y. Tang, “Efficient Multi-view Clustering via Unified and Discrete Bipartite Graph Learning,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–12, Apr. 2023, doi: 10.1109/TNNLS.2023.3261460.

[14] H. Wei, L. Chen, C. L. P. Chen, J. Duan, R. Han, and L. Guo, “Fuzzy clustering for multiview data by combining latent information,” Applied Soft Computing, vol. 126, p. 109140, Sep. 2022, doi: 10.1016/j.asoc.2022.109140.

[15] S. Huang, Z. Kang, and Z. Xu, “Auto-weighted multi-view clustering via deep matrix decomposition,” Pattern Recognition, vol. 97, p. 107015, Jan. 2020, doi: 10.1016/j.patcog.2019.107015.

[16] J. Yang and C.-T. Lin, “Multi-View Adjacency-Constrained Hierarchical Clustering,” IEEE Transactions on Emerging Topics in Computational Intelligence, pp. 1–13, 2022, doi: 10.1109/TETCI.2022.3221491.

[17] J. Wu and J. M. Rehg, “Centrist: A visual descriptor for scene categorization,” IEEE transactions on pattern analysis and machine intelligence, vol. 33, no. 8, pp. 1489–1501, 2010.

[18] A. Oliva and A. Torralba, “Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope,” International Journal of Computer Vision, vol. 42, no. 3, pp. 145–175, May 2001, doi: 10.1023/A:1011139631724.

[19] X. Liu et al., “Efficient and Effective Regularized Incomplete Multi-View Clustering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 8, pp. 2634–2646, Aug. 2021, doi: 10.1109/TPAMI.2020.2974828.

[20] X. Niu, C. Zhang, X. Zhao, L. Hu, and J. Zhang, “A multi-view ensemble clustering approach using joint affinity matrix,” Expert Systems with Applications, vol. 216, p. 119484, Apr. 2023, doi: 10.1016/j.eswa.2022.119484.

[21] W. Xia, Q. Gao, Q. Wang, X. Gao, C. Ding, and D. Tao, “Tensorized Bipartite Graph Learning for Multi-View Clustering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 4, pp. 5187–5202, Apr. 2023, doi: 10.1109/TPAMI.2022.3187976.

[22] X. Xie and Y. Xiong, “Generalized multi-view learning based on generalized eigenvalues proximal support vector machines,” Expert Systems with Applications, vol. 194, p. 116491, May 2022, doi: 10.1016/j.eswa.2021.116491.

[23] S. Luo, C. Zhang, W. Zhang, and X. Cao, “Consistent and Specific Multi-View Subspace Clustering,” in Proc. AAAI Conf. Artif. Intell., Apr. 2018. doi: 10.1609/aaai.v32i1.11617.

[24] J. Wu, Z. Lin, and H. Zha, “Essential Tensor Learning for Multi-View Spectral Clustering,” IEEE Transactions on Image Processing, vol. 28, no. 12, pp. 5910–5922, Feb. 2019, doi: 10.1109/TIP.2019.2916740.

[25] G.-Y. Zhang, D. Huang, and C.-D. Wang, “Facilitated low-rank multi-view subspace clustering,” Knowledge-Based Systems, vol. 260, p. 110141, Jan. 2023, doi: 10.1016/j.knosys.2022.110141.

About

Collection of commonly used multi-view datasets.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published