The implementation for the paper [Layer-Guided UAV Tracking: Enhancing Efficiency and Occlusion Robustness] on The Visual Computer
Create and activate a conda environment:
conda create -n LGTrack python=3.8
conda activate LGTrack
Install the required packages:
pip install -r requirements.txt
Put the tracking datasets in ./data. It should look like:
${PROJECT_ROOT}
-- data
-- lasot
|-- airplane
|-- basketball
|-- bear
...
-- got10k
|-- test
|-- train
|-- val
-- coco
|-- annotations
|-- images
-- trackingnet
|-- TRAIN_0
|-- TRAIN_1
...
|-- TRAIN_11
|-- TEST
Run the following command to set paths:
cd <PATH_of_LGTrack>
python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir ./output
You can also modify paths by these two files:
./lib/train/admin/local.py # paths for training
./lib/test/evaluation/local.py # paths for testing
python tracking/train.py --script lgtrack --config deit_tiny_patch16_224 --save_dir ./output --mode single
Put the downloaded weights on <PATH_of_LGTrack>/output/checkpoints/train/lgtrack/deit_tiny_patch16_224
python tracking/test.py lgtrack deit_tiny_patch16_224 --dataset uav123 --threads 4 --num_gpus 1
python tracking/analysis_results.py # need to modify tracker configs and names
python tracking/profile_model.py --script lgtrack --config deit_tiny_patch16_224
If our work is useful for your research, please consider citing.
