[ICIP 2023] LLIEFormer: A Low-Light Image Enhancement Transformer Network with a Degraded Restoration Model
LLIEFormer: A Low-Light Image Enhancement Transformer Network with a Degraded Restoration Model Xunpeng Yi, Yuxuan Wang, Yizhen Zhao, Jia Yan, Weixia Zhang in ICIP 2023
We provide the pretrained models:
- LLIEFormer pretrained on LOL dataset at [Google Drive] | [Baidu Drive] (code: 9m5g).
| Method | PSNR | SSIM |
|---|---|---|
| LLIEFormer | 22.08 | 0.883 |
- LLIEFormer pretrained on PairL1.6K dataset at [Google Drive] | [Baidu Drive] (code: v513) (update version).
| Method | PSNR | SSIM |
|---|---|---|
| Zero-DCE | 16.90 | 0.678 |
| KinD | 17.27 | 0.645 |
| KinD++ | 18.52 | 0.701 |
| LIME | 18.19 | 0.671 |
| RUAS | 17.91 | 0.633 |
| RetinexNet | 16.71 | 0.626 |
| LLIEFormer | 25.14 | 0.797 |
You can put and rename the dataset in the following way:
dataset/
LOLdataset/
train/
high/
low/
eval/
high/
low/cd LLIEFormer-main/
CUDA_VISIBLE_DEVICES=0 python test.pycd LLIEFormer-main/
CUDA_VISIBLE_DEVICES=0 python train.pyIf you find our work useful for your research, please cite our paper
@inproceedings{yi2023llieformer,
title={Llieformer: A Low-Light Image Enhancement Transformer Network with a Degraded Restoration Model},
author={Yi, Xunpeng and Wang, Yuxuan and Zhao, Yizhen and Yan, Jia and Zhang, Weixia},
booktitle={2023 IEEE International Conference on Image Processing (ICIP)},
pages={1195--1199},
year={2023},
organization={IEEE}
}