Skip to content

ggml_cuda_compute_forward: RMS_NORM failed #1325

@AnonymousVibrate

Description

@AnonymousVibrate
llm = LlamaCpp(
    model_path=model_name_or_path,
    n_ctx= 2048,
    verbose=True,
    n_threads=4,
    n_batch=512,
    n_gpu_layers = 8,
    callback_manager=callback_manager,
    stop = ['HUMAN:'], # Dynamic stopping when such token is detected.
    temperature = 0.4,
    streaming=True
)

This might be because of n_batch =512
Output : ggml_cuda_compute_forward: RMS_NORM failed

llm = LlamaCpp(
    model_path=model_name_or_path,
    n_ctx= 2048,
    verbose=True,
    n_threads=4,
    n_batch=30,
    n_gpu_layers = 8,
    callback_manager=callback_manager,
    stop = ['HUMAN:'], # Dynamic stopping when such token is detected.
    temperature = 0.4,
    streaming=True
)

Output : ggml_cuda_compute_forward: ADD failed

TERMINAL :


llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = .
llama_model_loader: - kv   2:                       llama.context_length u32              = 2048
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 3200
llama_model_loader: - kv   4:                          llama.block_count u32              = 26
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 8640
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 100
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 32
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  10:                          general.file_type u32              = 2
llama_model_loader: - kv  11:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  12:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  13:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  15:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  16:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  17:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  18:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   53 tensors
llama_model_loader: - type q4_0:  183 tensors
llama_model_loader: - type q8_0:    1 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format           = GGUF V2
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 2048
llm_load_print_meta: n_embd           = 3200
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 32
llm_load_print_meta: n_layer          = 26
llm_load_print_meta: n_rot            = 100
llm_load_print_meta: n_embd_head_k    = 100
llm_load_print_meta: n_embd_head_v    = 100
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 3200
llm_load_print_meta: n_embd_v_gqa     = 3200
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-06
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 8640
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 2048
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: model type       = 3B
llm_load_print_meta: model ftype      = Q4_0
llm_load_print_meta: model params     = 3.43 B
llm_load_print_meta: model size       = 1.84 GiB (4.62 BPW)
llm_load_print_meta: general.name     = .
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: PAD token        = 0 '<unk>'
llm_load_print_meta: LF token         = 13 '<0x0A>'
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:   no
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA GeForce 930MX, compute capability 5.0, VMM: yes
llm_load_tensors: ggml ctx size =    0.18 MiB
llm_load_tensors: offloading 8 repeating layers to GPU
llm_load_tensors: offloaded 8/27 layers to GPU
llm_load_tensors:        CPU buffer size =  1887.49 MiB
llm_load_tensors:      CUDA0 buffer size =   531.95 MiB
..............................................................................................
llama_new_context_with_model: n_ctx      = 2048
llama_new_context_with_model: n_batch    = 30
llama_new_context_with_model: n_ubatch   = 30
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:  CUDA_Host KV buffer size =   450.00 MiB
llama_kv_cache_init:      CUDA0 KV buffer size =   200.00 MiB
llama_new_context_with_model: KV self size  =  650.00 MiB, K (f16):  325.00 MiB, V (f16):  325.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.12 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =     9.20 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =     9.20 MiB
llama_new_context_with_model: graph nodes  = 838
llama_new_context_with_model: graph splits = 3
AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 0 |
Model metadata: {'general.name': '.', 'general.architecture': 'llama', 'llama.context_length': '2048', 'llama.rope.dimension_count': '100', 'llama.embedding_length': '3200', 'llama.block_count': '26', 'llama.feed_forward_length': '8640', 'llama.attention.head_count': '32', 'tokenizer.ggml.eos_token_id': '2', 'general.file_type': '2', 'llama.attention.head_count_kv': '32', 'llama.attention.layer_norm_rms_epsilon': '0.000001', 'tokenizer.ggml.model': 'llama', 'general.quantization_version': '2', 'tokenizer.ggml.bos_token_id': '1', 'tokenizer.ggml.padding_token_id': '0'}
Using fallback chat format: None

There is no issue if not offloaded to GPU. It runs smoothly on my CPU but it takes time to generate.
Im using Model : orca-mini-3b-gguf2-q4_0.gguf (version GGUF V2)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions