-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Closed
Description
llm = LlamaCpp(
model_path=model_name_or_path,
n_ctx= 2048,
verbose=True,
n_threads=4,
n_batch=512,
n_gpu_layers = 8,
callback_manager=callback_manager,
stop = ['HUMAN:'], # Dynamic stopping when such token is detected.
temperature = 0.4,
streaming=True
)
This might be because of n_batch =512
Output : ggml_cuda_compute_forward: RMS_NORM failed
llm = LlamaCpp(
model_path=model_name_or_path,
n_ctx= 2048,
verbose=True,
n_threads=4,
n_batch=30,
n_gpu_layers = 8,
callback_manager=callback_manager,
stop = ['HUMAN:'], # Dynamic stopping when such token is detected.
temperature = 0.4,
streaming=True
)
Output : ggml_cuda_compute_forward: ADD failed
TERMINAL :
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.name str = .
llama_model_loader: - kv 2: llama.context_length u32 = 2048
llama_model_loader: - kv 3: llama.embedding_length u32 = 3200
llama_model_loader: - kv 4: llama.block_count u32 = 26
llama_model_loader: - kv 5: llama.feed_forward_length u32 = 8640
llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 100
llama_model_loader: - kv 7: llama.attention.head_count u32 = 32
llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 32
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 10: general.file_type u32 = 2
llama_model_loader: - kv 11: tokenizer.ggml.model str = llama
llama_model_loader: - kv 12: tokenizer.ggml.tokens arr[str,32000] = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv 13: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv 15: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 16: tokenizer.ggml.eos_token_id u32 = 2
llama_model_loader: - kv 17: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 18: general.quantization_version u32 = 2
llama_model_loader: - type f32: 53 tensors
llama_model_loader: - type q4_0: 183 tensors
llama_model_loader: - type q8_0: 1 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format = GGUF V2
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 2048
llm_load_print_meta: n_embd = 3200
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 32
llm_load_print_meta: n_layer = 26
llm_load_print_meta: n_rot = 100
llm_load_print_meta: n_embd_head_k = 100
llm_load_print_meta: n_embd_head_v = 100
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 3200
llm_load_print_meta: n_embd_v_gqa = 3200
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 8640
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx = 2048
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: model type = 3B
llm_load_print_meta: model ftype = Q4_0
llm_load_print_meta: model params = 3.43 B
llm_load_print_meta: model size = 1.84 GiB (4.62 BPW)
llm_load_print_meta: general.name = .
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: PAD token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce 930MX, compute capability 5.0, VMM: yes
llm_load_tensors: ggml ctx size = 0.18 MiB
llm_load_tensors: offloading 8 repeating layers to GPU
llm_load_tensors: offloaded 8/27 layers to GPU
llm_load_tensors: CPU buffer size = 1887.49 MiB
llm_load_tensors: CUDA0 buffer size = 531.95 MiB
..............................................................................................
llama_new_context_with_model: n_ctx = 2048
llama_new_context_with_model: n_batch = 30
llama_new_context_with_model: n_ubatch = 30
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CUDA_Host KV buffer size = 450.00 MiB
llama_kv_cache_init: CUDA0 KV buffer size = 200.00 MiB
llama_new_context_with_model: KV self size = 650.00 MiB, K (f16): 325.00 MiB, V (f16): 325.00 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 0.12 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 9.20 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 9.20 MiB
llama_new_context_with_model: graph nodes = 838
llama_new_context_with_model: graph splits = 3
AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 0 |
Model metadata: {'general.name': '.', 'general.architecture': 'llama', 'llama.context_length': '2048', 'llama.rope.dimension_count': '100', 'llama.embedding_length': '3200', 'llama.block_count': '26', 'llama.feed_forward_length': '8640', 'llama.attention.head_count': '32', 'tokenizer.ggml.eos_token_id': '2', 'general.file_type': '2', 'llama.attention.head_count_kv': '32', 'llama.attention.layer_norm_rms_epsilon': '0.000001', 'tokenizer.ggml.model': 'llama', 'general.quantization_version': '2', 'tokenizer.ggml.bos_token_id': '1', 'tokenizer.ggml.padding_token_id': '0'}
Using fallback chat format: None
There is no issue if not offloaded to GPU. It runs smoothly on my CPU but it takes time to generate.
Im using Model : orca-mini-3b-gguf2-q4_0.gguf (version GGUF V2)
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
No labels