|
6061 | 6061 | </paper> |
6062 | 6062 | <paper id="424"> |
6063 | 6063 | <title>Answering Ambiguous Questions via Iterative Prompting</title> |
6064 | | - <author><first>Weiwei</first><last>Sun</last><affiliation>Shandong University</affiliation></author> |
| 6064 | + <author id="weiwei-sun-sd"><first>Weiwei</first><last>Sun</last><affiliation>Shandong University</affiliation></author> |
6065 | 6065 | <author><first>Hengyi</first><last>Cai</last><affiliation>JD.com</affiliation></author> |
6066 | 6066 | <author><first>Hongshen</first><last>Chen</last><affiliation>JD.com</affiliation></author> |
6067 | 6067 | <author><first>Pengjie</first><last>Ren</last><affiliation>Shandong University</affiliation></author> |
|
10357 | 10357 | <paper id="719"> |
10358 | 10358 | <title><fixed-case>RADE</fixed-case>: Reference-Assisted Dialogue Evaluation for Open-Domain Dialogue</title> |
10359 | 10359 | <author><first>Zhengliang</first><last>Shi</last><affiliation>Shandong University</affiliation></author> |
10360 | | - <author><first>Weiwei</first><last>Sun</last><affiliation>Shandong University</affiliation></author> |
| 10360 | + <author id="weiwei-sun-sd"><first>Weiwei</first><last>Sun</last><affiliation>Shandong University</affiliation></author> |
10361 | 10361 | <author><first>Shuo</first><last>Zhang</last><affiliation>Bloomberg</affiliation></author> |
10362 | 10362 | <author><first>Zhen</first><last>Zhang</last><affiliation>Shandong University</affiliation></author> |
10363 | 10363 | <author><first>Pengjie</first><last>Ren</last><affiliation>School of Computer Science and Technology, Shandong University</affiliation></author> |
|
12556 | 12556 | <paper id="873"> |
12557 | 12557 | <title>Estimating the Uncertainty in Emotion Attributes using Deep Evidential Regression</title> |
12558 | 12558 | <author><first>Wen</first><last>Wu</last><affiliation>University of Cambridge</affiliation></author> |
12559 | | - <author><first>Chao</first><last>Zhang</last><affiliation>Tsinghua University</affiliation></author> |
| 12559 | + <author id="chao-zhang-tu"><first>Chao</first><last>Zhang</last><affiliation>Tsinghua University</affiliation></author> |
12560 | 12560 | <author><first>Philip</first><last>Woodland</last><affiliation>University of Cambridge</affiliation></author> |
12561 | 12561 | <pages>15681-15695</pages> |
12562 | 12562 | <abstract>In automatic emotion recognition (AER), labels assigned by different human annotators to the same utterance are often inconsistent due to the inherent complexity of emotion and the subjectivity of perception. Though deterministic labels generated by averaging or voting are often used as the ground truth, it ignores the intrinsic uncertainty revealed by the inconsistent labels. This paper proposes a Bayesian approach, deep evidential emotion regression (DEER), to estimate the uncertainty in emotion attributes. Treating the emotion attribute labels of an utterance as samples drawn from an unknown Gaussian distribution, DEER places an utterance-specific normal-inverse gamma prior over the Gaussian likelihood and predicts its hyper-parameters using a deep neural network model. It enables a joint estimation of emotion attributes along with the aleatoric and epistemic uncertainties. AER experiments on the widely used MSP-Podcast and IEMOCAP datasets showed DEER produced state-of-the-art results for both the mean values and the distribution of emotion attributes.</abstract> |
|
14871 | 14871 | </paper> |
14872 | 14872 | <paper id="132"> |
14873 | 14873 | <title><fixed-case>MOSPC</fixed-case>: <fixed-case>MOS</fixed-case> Prediction Based on Pairwise Comparison</title> |
14874 | | - <author><first>Kexin</first><last>Wang</last><affiliation>Bytedance</affiliation></author> |
| 14874 | + <author id="kexin-wang-bd"><first>Kexin</first><last>Wang</last><affiliation>Bytedance</affiliation></author> |
14875 | 14875 | <author><first>Yunlong</first><last>Zhao</last><affiliation>Institute of Automation, Chinese Academy of Sciences</affiliation></author> |
14876 | 14876 | <author><first>Qianqian</first><last>Dong</last><affiliation>ByteDance AI Lab</affiliation></author> |
14877 | 14877 | <author><first>Tom</first><last>Ko</last><affiliation>ByteDance AI Lab</affiliation></author> |
|
15923 | 15923 | <author><first>Jiatong</first><last>Shi</last><affiliation>Carnegie Mellon University</affiliation></author> |
15924 | 15924 | <author><first>Yun</first><last>Tang</last><affiliation>Facebook</affiliation></author> |
15925 | 15925 | <author><first>Hirofumi</first><last>Inaguma</last><affiliation>Meta AI</affiliation></author> |
15926 | | - <author><first>Yifan</first><last>Peng</last><affiliation>Carnegie Mellon University</affiliation></author> |
| 15926 | + <author id="yifan-peng-cmu"><first>Yifan</first><last>Peng</last><affiliation>Carnegie Mellon University</affiliation></author> |
15927 | 15927 | <author><first>Siddharth</first><last>Dalmia</last><affiliation>Google</affiliation></author> |
15928 | 15928 | <author><first>Peter</first><last>Polák</last><affiliation>Charles University, MFF UFAL</affiliation></author> |
15929 | 15929 | <author><first>Patrick</first><last>Fernandes</last><affiliation>Carnegie Mellon University, Instituto de Telecomunicações</affiliation></author> |
|
0 commit comments