Skip to content

adamjri/simple_function_test

Repository files navigation

simple_function_test

Dependencies

  • Python 3.6
  • Tensorflow
  • Keras
  • Matplotlib

Description

  • /networks
    • /dataset
      • dataset_generator.py generates data given a function object, splitting into training and testing
      • dataset_files.py save and load datasets from and to files
    • /models
      • initializers.py: Custom initializers for neural network model parameters using weight initialization procedures from: https://arxiv.org/abs/1704.08863
      • metrics.py: Mean sqaured error metric
      • model_base.py: Abstract Keras model class with training procedure
      • simple_dense.py: Keras model implementation of basic multi-layer dense network
    • /visualizers
      • simple_dense_visualizer.py: Visualization function for plotting data during training
  • /simple_funcs
    • func_composition.py: Composes functions based on a single neural network layer into a single function object similar to a random dense neural network
    • function_base.py: Abstract base class for function objectives
    • step_funcs.py: Creates a function object for a step function of varying complexity, i.e. simple functions
  • function_params.py: parameters used to create function object at runtime
  • model_params.py: parameters used for building neural network model at runtime
  • main.py: running a training session given a model and a dataset
  • generate_test_data.py: generate dataset files from a function object
  • generate_stats_plots.py: Generate statistics and plots from a training session
  • generate_qsubs.py: Used for generating qsub commands for running many tests on the EPFL cluster
  • run_from_qsub.py: Used by the qsub commands to run training on an EPFL cluster node

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published